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The Effect of Microgravity on the Growth of Lead Tin Telluride
Principal Investigator: R. Narayanan

Summary: The main objective of this research was to present a model for the
prediction of the effect of the microgravity environment on the growth of
Lead Tin Telluride.

The attitude change and its relation to the experimental objectives: The
main objective for the AADSF experiment on USMP 3 involving LTT growth
was to estimate the effect of ampoule orientation on the axial and radial
segregation of tin telluride. As the furnace was not situated on a gimbal
there was no possibility to reorient the ampoule during the flight. Instead the
only way to change the growth orientation was to change the attitude of the
orbiter. This was accomplished by vernier rocket firings.

In what follows it must be noted that the orbiter body coordinates are
such that the positive z axis points outward from the “belly’, the positive “x’
axis points outwards from the nose and the positive "y’ axis points outwards
from the starboard side. The furnace which was in the pay load had its axis
aligned with the orbiter’'s "z’ axis with the hot end closest to the shuttle
body. There were basically three orientations that were desired. These
corresponded to the ampoule being seen as a heated from above ( thermally
stable-solutally unstable) configuration, the heated from below ( where the
instabilities were reversed from the first orientation) configuration and an "in
between’ case where the ampoule axis was misaligned with respect to the
orbiters "g: ‘' axis.

In order to understand the role of each orbiter attitude that was
requested it is necessary to have an idea of the first order effects on the
residual acceleration levels on the orbiter. The center of gravity of the orbiter
(CG) generally did not change very much during the USMP 3 part of the
mission as the change in mass was insignificant. A displacement from the
CG of the AADSF furnace and the attitude of the orbiter affected the so
called gravity gradient’ force ( arising from the centrifugal component of
acceleration). This gravity gradient had a major effect on the force fields
which at low frequency levels ( under 1 Hz) was of the order of 10° ge
where ge is earth’s gravity. A second major effect on the residual forces is
the atmospheric drag on the orbiter. This drag can only have a deceleration
effect on the vehicle and therefore affect the forces on the particles in the
AADSF. This drag was itself affected by the orbiter attitude, the position of
the orbiter with respect to the sun ( i.e., atmospheric density) and the



orbiting path around the globe as the earth is not a perfect sphere. The
deceleration and the tendency for the orbiter to get into an aerodynamically
stable mode necessitated the need for vernier booster firings. The forces
associated with these corrective measures were of high magnitude ( roughly
10 *ge -10%ge) and were of a high frequency ( 5-10 Hz).

Keeping in mind the main effects on the residual low frequency
acceleration we now turn to the various attitudes that were chosen during
the mission. The first attitude had a pitch of 185 degrees and a roll of 7
degrees. This attitude is roughly equal to the orbiter flying in a position of
payload to earth and tail into the wind. ( also called -Zv ,-Xw). The drag was
very small and the small roll angle served mainly to offer a minor change in
the gravity gradient. The cold end of the furnace was closest to earth and
the effect was to have a large axial to normal ratio of the axial vector. The
second attitude was meant to give a heated from below configuration. At
first sight it might appear that the best attitude would be a zero degree pitch.
However this was considered to be a risky attitude on account of debris.
The second attitude was therefore obtained by considering a deceleration
mode of the orbiter. Here the orbiter was placed in a pitch of 90 degrees
with a small negative yaw of 17 degrees ( in alternate terminology this
amounted to an attitude of -Xv and +2Zw). The pitch virtually maximized the
drag on the orbiter while the yaw served the purpose of adjusting the gravity
gradient on the furnace. Because the orbiter was decelerating it had the
opposite effect on the fluid particles in the AADSF ampoule relative to the
shuttle and the net effect was to accelerate the fluid in the cold end towards
the hot end. This was equivalent of generating a thermally unstable and
solutally stable configuration. Because the deceleration force was not of a
high magnitude the net axial to normal ratio was not very high. Moreover the
normal component of the force fields were very small and so in the actual
flight one could expect that small changes in the “dead band’ could cause a
substantial undesired change in the axial to normal ratio. The last attitude
had a pitch of 123 degrees and the net effect of the drag was to change the
orientation of the axial vector in the furnace so that it behaved as if it was
tilted with respect to g: of the shuttle. While the choice of orbiter attitudes
had to do with the prefered growth direction the reasons for choosing these
various growth directions or ampoule orientations resulted from preliminary
work done using computational fluid dynamics.

Preliminary estimates of axis orientation using CFD: The
computational fluid dynamic calculation procedure is best explained by
considering Figure 1 . The ampoule liquid region is assumed to be constant
as the solidification rates are normally very small. The boundary conditions
indicate hot and cold zones as well as insulating zones. The far field
concentration is assumed to be constant and the interface condition respects
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mass conservation along with solutal segregation. The effect of the
magnitude of the gravity vector is seen in Figures 2 a) and b) and we
immediately conclude that the flow at low frequency low amplitude
accelerations (10°ge) will be of a weak torroidal type. Higher amplitude
forces will cause solutal convection to come into play but such high
amplitude acceleration vectors were not present at the low frequency levels
during USMP 3 and were mainly associated with high frequency activities
such as booster firings and water dumps. While we do not presently have
any predictions on the effects of high frequency g -jitter it is clear from the
order of magnitude of the calculated velocity vectors for the case of low
frequency with 10°g. that very little mixing takes place. The velocity is no
greater than 10° cm/ sec. Given an initial liquid region size of 5 cm, this
small velocity amounts to an initial mixing time of 10 ® seconds. Meanwhile
the solidification is at the rate of 1 cm/ hour. When the liquid region size is
about 1 cm the mixing time is about 2 x10 ° seconds. Clearly this is
insignificant because the entire growth period is about 2 x10 4 seconds . In
other words we predict that only diffusion controlled growth ought to prevail
at 10%g. and this more true at lower gravitational levels which were
experienced during USMP 3.

The effect of a five degree offset with respect to the vertical
orientation was calculated and the results are graphically shown in Fig. 2 c.
What is seen from this figure is that small tilts give rise to swirling flow and
this flow contains the solutal boundary layer to the depleting surface. This
may be contrasted with torroidal flow in Fig. 2 a ( for the vertical orientation)
that sweeps the solute out of the solutal boundary layer. The solutal
boundary layer contains most of the rejected SnTe and so swirling flow if
anything should help by making diffusive growth more probable. In other
words one might conclude that a constant off axis arrangement is better than
an on axis aligned ampoule. Fig. 3 is a depiction of the mixing patterns that
are seen when the ampoule is subjected to a time dependent tilt. It must be
noted that the velocities are still very small and so even in the case when the
tilt is a periodic function of time the growth is expected to be diffusion
controlled.

In summary we have concluded that diffusive growth was predicted
under low frequency g- jitter conditions. The high frequency was not studied
but we did conclude that the time constant for the fastest transporting
mechanism { heat transfer) was much larger than the corresponding period
for high frequency ( 5 Hz) g- jitter.

Publications: The publications that arose from this work and directly related
to the objectives are attached and are listed below:
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Fig. 1 The schematic of the geometry and thermal and
concentration boundary conditions of the calculation.
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Fig.2. The 3D flow field in the liquid region with constant *g’ and fixed orientation.
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A 3D NUMERICAL MODEL FOR FLOW PROFILES IN A BRIDGMAN
TUBE --THE EFFECTS OF CONSTANT AND PERIODIC OFF AXIS
ORIENTATION IN A LOW GRAVITY ENVIRONMENT

A. X.Zhao'.R. NarayananI and A. L. Fripp2

: Department of Chemical Engineering, University of Florida. Gainesville, FL 32611
*NASA Langley Research Center Hampton, VA 23665

ABSTRACT:

A 3D numerical calculation is performed on a model that depicts the flow profiles due to thermo-solutal
convection in a cylindrical tube. The calculations were done with the purpose of delineating the qualitative
features of the flow profiles for the cases when the container's axis is perfectly aligned with respect to the
mean gravity vector and also when it changes periodically with respect to the gravity vector. It is found that
the flow profiles are similar to those of the Rayleigh-Bénard problem in the case of perfect alignment while a
swirling pattern appears when the tube’s axis is not aligned with the gravity vector. This indicates that it
might be preferable to have a slight tilt in the contdiner axis during crystal growth as swirling flow will
diminish axial mixing. The solutal convection is the dominant feature of the flow and is affected
considerably by the gravity level. © 1999 COSPAR. Published by Elsevier Science Ltd.

INTRODUCTION

This is a brief report describing the flow profiles that are induced in a low gravity environment in a
Bridgman tube in which the fluid occupies a constant volume. The Bridgman tube as considered in this
study is merely a circular cylinder that is subjected to radial thermal gradients and axial solutal gradients.

Typically, the Bridgman tube is used in the vertical directional solidification of compound semi conductors
such as Lead Tin Telluride. The growth of such materials is affected substantially by the convective flow
profiles that accompany the process. This convection is due to thermal and solutal gradients that are
generated because of the solidification process. Amold et. al. (1991) did calculations to model a GaAs space
experiment and concluded that three-dimensional flows occur under certain gravitational values and
orientations. Their calculations were not concerned with solutal convection. Naumann and Baugher (1992)
have made analytical estimates of radial segregation in Bridgman growth for low-level steady and periodic
accelerations. In any actual growth process, the liquid zone is ever shrinking and this can be expected to
change the flow profiles quite a bit. Nonetheless it would be interesting to have an idea of the flow profiles
that are generated when the force conditions on the ampoule are compatible to a time dependent
microgravity level and where certain assumptions such as a constant liquid zone is assumed. We present here
a numerical model that shows the effects of off axis and a time dependent orientation on the flow profiles in
a Bridgman tube. The effect of tilting the otherwise vertical container with respect to gravity is also
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described. The calculations were done with the purpose of delineating the qualitative features of the flow
profiles for the cases when the container's axis is perfectly aligned with respect to the mean gravity vector
and also when its axis periodically changes with respect to the gravity vector. The gravitational levels that
are assumed range from 107ge (or ten micro g) to 10 ‘4gc where g. is earth's gravity. A value of ten micro g is
reasonable as it is a fair representation of the low frequency accelerations experienced on the cargo bay of the
U.S. space shuttle or on the future international space station if the Bridgman tube. A level of 100 micro g is
not very probable. however we also present calculations that include this extreme case. To the best of our
knowledge this is the only study that shows the dominant effect of soiutal convection over thermal
convection at the higher gravity levels and also the only study where the ampoule axis orientation is varied
with time.

Tabie | The Thermophysical Properties Used in the Calculations
7.04 g/cm’

Density
Kinematic Viscosity 0.0024 cm?/s
Thermal Diffusivity 0.03 cm’/s
Solutal Diffusivity 7 10%° cm’ss
Thermal Expansion Coefficient 1.18 10™/ce
Solutal Expansion Coefficient 0.22 /Weight fraction
Segregation Coefficient 0.7

THE MODEL AND THE NUMERICAL SCHEME

The model that is used assumes that the Boussinesq equations hold. Further the calculations were done
assuming that the fluid is Lead Tin Telluride reflecting our interest in compound semiconductors. The
thermophysical properties of Lead Tin Telluride as used in the calculation are given in Table 1. Figure 1
describes the situation when a container is subject to thermal gradients with a solidifying interface at
z=H-Hsolia. The thermal and concentration boundary conditions imposed on the container are given in Figure
1. No-slip conditions are used at all boundaries including the solid-liquid interface upon which the
coordinate system is fixed and which is assumed to move down in the z direction at a constant speed V;
equal to 1 cm/hr. The height of the tube of diameter equal to 1. cm.is given by H and assumed to be 5.0 cm.,
equally divided between the solid and liquid zones while the insulation zone is assumed to occupy the
middle one third. These correspond roughly to the experimental ampoule used in a Lead Tin Telluride
experiment that was conducted on USMP 3. The hottest temperature is assumed to be 1150 degrees Celsius
while the coldest temperature is fixed to be 700 degrees, the interface being at 900 degrees. The orientation
of the gravitational acceleration is expressed in terms of the angle between the gravity and the negative
direction of the z-axis. The major assumption is that the liquid length is kept constant. As a result it is
assumed that the end of the liquid was at a constant concentration , C, equal to 0.2 weight fraction. This is
tantamount to a continuous feeding of such liquid at the solidification rate V5. Before we go on it might be
useful to point out that the thermal Rayleigh number is estimated to be about 65 for a gravity level 10“‘gc
while the solutal Rayleigh using the same length scale is about 147000
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Fig. 1 The schematic of the geometry and thermal and
concentration boundary conditions of the calculation.

RESULTS OF THE CALCULATIONS AND CONCLUSIONS

The finite volume method, SIMPLE (cf. Patankar,1980) was chosen to solve the governing equations.
Figure 2 shows the flow profiles at two different gravity levels. Figure 2a describes the pattern that is
expected at a constant g level of IO'Sgc . What is to be observed is vertical stacking of an axisymmetric or
torroidal pattern. This vertical stacking may be expected as the top of the ampoule is hotter than the bottom
and the lower “cell' is in the insulation zone. The configuration acts like a fluid that is "heated from above'
and the weak flow is primarily driven by radial gradients. The weakness in the lower cell is primarily due to
the effect of the presence of the 'no slip' solid boundary.

The situation changes somewhat for the case of a g level of 10'4ge as seen in Figure 2b, for here the solutal
convection begins to play a part. The solutal gradients are unstable in the sense that they promote flow even
if the thermal expansion coefficient is negligible. As observed earlier the solutal Rayleigh number is about
147000 whereas the critical solutal Rayleigh number. in the absence of thermal gradients for this aspect ratio
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Fig.2. The 3D flow field in the liquid region with constant ‘g’ and fixed orientation.
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(radius/ height =0.2) turns out to be about 50000 from the calculations ot Hardin et. al.. The unicellular
patterns that are observed are a result of the solutally driven convection and are expected for this geometry
according to the results of the Rayleigh-Bénard problem (cf. Hardin et.al.. 1990). Notice further that the
vertical stacking arrangement disappeared for the larger g’ level indicating the dominance of the solutal
convection over the thermal convection. Figure 2c shows the flow profiles resulting from a time invariant
change of the ampoule axis with respect to the mean gravity vector of 10°g.. What is immediately apparent
is the swirling flow that helps contain the rejected solute near the solid liquid interface. The 'z’ component of
this type of flow is much smaller than the other two components except near the interface and the end of the
liquid where all components are set to zero on account of no-slip. It is a concentration induced flow because
the velocity components near the interface in Figure 2c are much larger than in Figure 2a. In a real crystal
growth configuration such an off axis tilt would help prevent axial mixing and therefore be beneficial to the
crystal. If the "g'- value is increased by an order of magnitude the flow is mostly of a unicellular style except
near the interface. This is shown in Figure 2d. Figure 3 depicts the periodic change of the cylinder axis with
the gravity vector. The frequency was set to be one cycle per hour. This was an arbitrary choice even though
aerodynamic drag causes a readjustment every 20 minutes or so in a typical space orbiter. All the same the
results can be expected to be qualitatively similar to those reported here in the case when the frequency is
increased three fold. The flow profiles at a constant 'z’ plane near the solid liquid interface are given at every
quarter cycle. once a periodic steady state is reached. Notice that the direction of the swirl changes every
half cycle i.e., when the gravity vector crosses the cylinder axis leading to local mixing near the solid liquid
interface.

The effect of gravity level and time periodic off axis alignment show collectively that the convection at low
gravity in a bottom or top seeded Bridgman tube is primarily in the solutal driven mode as long as the gravity
level is not very small. Moreover a slight tilt with respect to gravity causes the fluid flow to go into a
swirling mode so that solute is contained near the solute-generating boundary.
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Abstract

One of the primary benefits of conducting scientific research in space is to take advantage of the low acceleration
environment. For experimenters conducting space research in the field of materials science the quality of the science
return is contingent upon the extremely low frequency acceleration environment ( <€ 1 Hz) aboard the spacecraft. Primary
contributors to this low frequency acceleration environment (commonly referred to as the steady-state acceleration
environment) include aerodynamic drag, gravity-gradient, and rotational effects. The space shuttle was used on the
STS-75 mission as a microgravity platform for conducting a material science experiment in which a lead tin telluride alloy
was melted and regrown in the Advanced Automated Directional Solidification Furnace under different steady-state
acceleration environment conditions by placing the shuttle in particular fixed orientations during sample processing. The
two different shuttle orientations employed during sample processing were a bay to Earth, tail into the velocity vector
shuttle orientation and a tail to Earth, belly into the velocity vector shuttle orientation. Scientists have shown. through
modeling techniques, the effects of various residual acceleration vector orientations to the micro-buoyant flows during
the growth of compound semiconductors. The signatures imposed by these temporally dependent flows are manifested in
the axial and radial segregation or composition along the crystal.

1. Introduction

1.1. Motivation for conducting specific materials
science experiments in space

Crystal growth research in ground-based labo-

ratories is complicated by the ever present effects of
gravity acting on the sample during processing.

* Corresponding author.

Such an effect oftentimes drives natural convection
within the sample. In theory, if these same types of
experiments are conducted in a microgravity envi-
ronment, buoyancy-driven convection effects due
to gravity are essentially eliminated, thus providing
ideal conditions for diffusive growth within the
sample. Under a microgravity environment scien-
tists are able to study the low frequency, low accel-
eration (referred to as the steady-state acceleration
regime) effects (if any) on materials. Furthermore,
scientists can use a space platform to determine
whether the particular direction of the steady-state

0022-0248:97 $17.00 Copyright :: 1997 Elsevier Science B.V. All rights reserved
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acceleration (SSA) vector present at the growth
location influences the quality of the space-pro-
cessed crystal. Results from these types of experi-
ments will allow scientists to validate or update
their models and theories in the field of crystal
growth research. Such discoveries are expected to
improve ground-based processing techniques for
crystal processing [1-3].

2. Lead tin telluride grown in space
2.1. Description

The lead tin telluride (PbSnTe) alloy was selected
as an experiment within the Advanced Automated
Directional Solidification Furnace (AADSF) to fly
aboard the Space Shuttle Columbia as part of
the Third United States Microgravity Payload
(USMP-3) mission (STS-75) in February and
March of 1996. The material was selected as an
experiment for investigation under microgravity
conditions due to the fact that it can be used to
produce infra-red detectors and lasers on Earth.
The primary objective of the experiment was to
determine the effects (if any) of the SSA environ-
ment during the processing of each of the PbSnTe
samples. Understanding the microscopic effects
during processing in a low-g environment could
improve the way these devices are made [4].

2.2. Specific experimental studies of PhSnTe

Even at acceleration levels as small as 5 x 10~ °g.
scientists interested in studying PbSnTe have de-
vised theories on how the crystal microstructure
will react to the small but constant accelerations
present at the sample location [3]. Contributors to
the SSA environment will be discussed later in the
paper.

Two possible crystal growth orientations with
respect to the SSA (gravity) vector will be ad-
dressed. Figs. 1 and 2 summarize these two possible
orientations. Fig. 1 is described as the “hot on top”
configuration; that is. the SSA vector travels in the
direction from the hot temperature portion of the
sample to the cooler temperature portion of the

Hot

Interface
moves
upwards

Y
Z/

ampoule
moves downwards

Fig. 1. Hot to cold configuration.

ampoule
moves prards

Cold

Interface
moves
downwards

Hot
e

Fig. 2. Cold to hot configuration.

sample. Fig. 2 depicts the “hot on bottom™ config-
uration. where the SSA vector travels in a direction
from the cold end to the hot end of the sample.
To understand which orientation is preferred one
must first look at the phase diagram [5] of the
PbSnTe alloy (Fig. 3). The phase diagram summar-
izes the equilibrium relationship between the tem-
perature and concentration values of the allov.
From Fig. 4a and Fig. 4b. assume that point “a”
defines the alloy at the molten state (that is. begin-
ning with a uniform mixture and the sample has
been meited back to the seed). If one then cools the
alloy to point “b™. in the two phase region. it will
separate into two parts - a solid phase which con-
tains a lower concentration of SnTe and a liquid
part which is more concentrated in SnTe. This. in
fact. is what is meant by "SnTe is rejected into the
liquid.™ Further cooling (point "¢} results in an
even higher concentration of SnTe rejected into the
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Fig. 4. (a) Phase diagram showing the operating lines. (b) Con-
centration prifile of PbSnTe in the solid and liquid.

liquid. In practice, the liquid concentration at the
solid-liquid interface will increase continuously
and smoothly along the liquidus line and the cool-
ing does not take place stepwise. It is shown in

Fig. 4a as such only for the sake of dramatizing an
explanation.

This rich concentration of SnTe just to the right
of the solid-liquid interface is dramatically different
than the composition of the specie at the far right
portion of the liquid. The composition of the hotter
liquid is predominantly PbTe. PbTe is more dense
than the SnTe that is near the solid-liquid interface.
However. the interface is cooler than the bulk
liquid and it may be noted that the density de-
creases with temperature [6]. Therefore, this poses
an interesting question and introduces the primary
scientific objective for this AADSF experiment. De-
pending on the orientation of the SSA vector.
which configuration is more stable for this particu-
lar class of material? The configuration from Fig. 1
depicts a solutally unstable (more dense specie,
PbTe. on top of sample), thermally stable (cooler
specie. SnTe. on bottom) configuration. The config-
uration from Fig. 2 depicts a solutally stable (more
dense specie. PbTe, on bottom of sample). thermal-
ly unstable (cooler specie. SnTe, on top) configura-
tion. Conducting this experiment in the micro-
gravity environment of space will allow scientists to
answer this scientific query.

2.3. Orbital dvnamics experiment requirements

In order to successfully test the scientific ques-
tions of this experiment it is paramount that the
SSA vector for both cases be as close as possible to
being parallel to the growth axis for each sample.
Recall that the vector for the first case travels in
a direction from the hot end to the cold region of
the AADSF (Fig. 1) and the vector for the second
case travels from the cold end to the hot end
(Fig. 2). Three primary factors contribute to the
steady-state acceleration environment at any loca-
tion away from the spacecraft center of gravity
(c.g.): drag, gravity-gradient. and rotational effects
[7]. Drag effects are a function of spacecraft alti-
tude. attitude. and the time in the 11-year solar
cycle that the mission takes place (atmospheric
density influence). Gravity-gradient eflects are
primarily a function of the distance away from the
shuttle center of gravity (c.g.) and the shuttle atti-
tude. Rotational effects are comprised of radial
contributions (a function of shuttle angular velocity



an

ght
ent
ght
tter
nse

Ace.
ulk

1S€S
ary
De-
tor.
cu-
21
‘Cle,
ler

;ore
aal-
ira-
ro-
sto

1es-
the
cto
ple.
s in
1 of
ond
end
the
ca-
vity
cCts
alti-
olar
eric
are
the
ti-
dial
ity

B.P. Matisak et al. { Journal of Crystal Growth 174 (1997) 90-95 93

components, . and the distance away from the
shuttle c.g.) and tangential contributions (a func-
tion of shuttle angular acceleration components, %,
and the distance away from the shuttle c.g). Meticu-
lous orbital dynamics studies using the Simulation
and Analysis of Multi-Spacecraft On-Orbit (SAM-
SON) 6-Degree of Freedom (6-DOF) model [8],
developed by engineers from Teledyne Brown En-
gineering at Marshall Space Flight Center (MSFC),
were conducted prior to the flight to align the SSA
vectors as parallel as possible to the long axis of the
respective samples (hot to cold. cold to hot config-
urations). Due to the location of the AADSF rela-
tive to the shuttle c.g., it became evident from the
studies that it was not possible to provide perfectly
aligned SSA vectors relative to the long axis of the
samples. A particular nomenclature was used in
defining how well these vectors were aligned with
the long axis of the sample. This nomenclature was
based on the ratio of the acceleration component
along the long axis of the sample, or the “axial”
component, to the acceleration component acting
perpendicular to the direction of growth, or the
“normal” component. The objective for both ex-
perimental cases was to obtain as high as possible
axial/normal ratio conditions during sample pro-
cessing.

2.4. Pre-flight and realtime SSA vector results
at the AADSF sample location

Orbital dynamics studies of the shuttle were
completed to determine the attitudes that provided
optimum axial/normal SSA ratios for the AADSF
scientific objectives [9]. These shuttle attitudes,
along with the predicted axial/normal ratios for the
two experiment runs, are provided in Figs. 5-8
respectively. The resulting AADSF attitudes were
forwarded to the flight operations teams at both
MSFC and the Johnson Space Center (JSC) to
incorporate during realtime AADSF science opera-
tions.

The Microgravity Analysis Work Station
(MAWS) team, represented by flight control engin-
eers with extensive orbital dynamics experience,
were located alongside the AADSF science team in
the Payload Operation Control Center (POCC) at

T radius vector

velocity vector

EARTH

Fig. 5. AADSF hot to cold attitude configuration.

Cold

-0.05ug

+Zpody

Axial:Normal ~ -14:1

0~ 4.1°

Hot

]

Fig. 6. Pre-flight modeled SSA vector at AADSF, hot to cold
configuration.

radius vector

velocity vector
into page

AADSF

Ix body distance
ORBITER CG

EARTH

Fig. 7. AADSF cold to hot attitude configuration.
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Cold

+Zpody

Axial:Normal ~ 2:1

© ~ 26.6°

| ]

Fig. 8. Pre-flight modeled SSA vector at AADSF. cold to hot
configuration.

MSFC. The MAWS team was responsible for
monitoring and evaluating the integrity of the SSA
environment at the AADSF location during sample
processing. The MAWS team was also responsible
during the flight for obtaining updated shuttle and
atmospheric density parameters and. if necessary.
make attitude modifications based on realtime
SAMSON 6-DOF simulation runs. Based on real-

Jowrnal of Crvstal Growth 174 (1997) 90 -95

time conditions. the MAWS team recommende
a modification to the first attitude to reduce undc
sirable gravity-gradient effects acting normal to th
growth axis of the sample. No modifications we:
made to the second AADSF attitude. Figs. 9 and |
provide a snapshot of the realtime MAWS result
of the SSA environment (as defined in axial/norm:
SSA ratio terms) during realtime sample processin
of both crystals. From the realtime data in Figs.

and 10 one can see that it is possible to analyticall
map the residual acceleration environment on a ve
hicle platform in Low Earth orbit (LEO) in suppor
of g-sensitive material science experiments. Real
time MAWS results from Figs. 9 and 10 show 200
correlation with the SAMSON 6-DOF analytica
solutions from Figs. 6 and 8. From Figs. 9 and I
one can observe a few characteristics in the data
From example, observed spikes represent the el
fects of Vernier Reaction Control System (VRCS
Jet firings that were required to maintain the cor
rect shuttle orientation during AADSF sample pro-
cessing. Straight slopes without spikes represen
loss of signal (LOS) periods where the shuttl
is temporarily out of communication with the
ground. It is interesting to note from Fig. 9 the
period around 196 h MET where the axial/norma
SSA ratio at AADSF decreased significantly. This
event was due to the fact that over that time perioc

Axial/Normal Ratio

N

I

F

I

! L R " 1

195.8 1%6.0

196.2

196.4 196.6

Mission Elapsed Time (Hours)

Fig. 9. Realtime snapshot of MAWS resuits. hot to cold attitude configuration.
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Fig. 10. Realtime snapshot of MAWS results, cold to hot attitude configuration.

the attitude control of the shuttle was temporarily
turned off as a result of thermal problems in the
VRCS system. The thermal problem was quickly
resolved and attitude control was reacquired.
Nevertheless, from this event one observes the sen-
sitivity of the SSA environment as a function of
shuttle orientation.

3. Conclusion

With the successful completion of these two
AADSF PbSnTe science experiments during the
USMP-3 mission, the experiment team is currently
analyzing the space-processed samples and final

~results will not be completed for many months. As
a result it will not be known for a while whether the
questions regarding specific crystal growth pro-
cesses will be answered. It is only through the
opportunity of space flight that scientists can con-
duct experiments under the influence of micrograv-
ity conditions to better understand crystal growth
processes that could not otherwise have been ob-
tained in ground-based laboratories. Similar types
of microgravity experiments will be conducted on
future shuttle and Space Station flights with the
goal of further understanding crystal processes.
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A NUMERICAL MODEL THAT SHOWS THE EFFECT OF GRAVITY
DRIVEN CONVECTION ON MEASUREMENTS OF MASS DIFFUSIVITY

C. Mallika'. A. X. Zhao®, R. Naralyana.n2 and T.J.Anderson’

IMetallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
ZDepartmenr of Chemical Engineering, University of Florida, Gainesville, Florida 32611.

ABSTRACT

The results of a numerical study that models the three dimensional flow of solutal convection in a cylindrical
geometry is presented. The model was developed to estimate the convective flows that accompany the
experimental measurement of molecular diffusivity of oxygen ions in liquid metals by the method of
electrochemical titration. The model predicts convective flows under certain conditions. The predictions are
in qualitative agreement with the experimental results that show an enhancement in the effective diffusivity.
© 1999 COSPAR. Published by Elsevier Science Ltd.

INTRODUCTION

This paper is concerned with the numerical modeling of the transport effects during the measurement of
oxygen diffusivity in liquid metals and the qualitative comparison of the model with experiments. Several
investigators using electrochemical titrations have measured the diffusivity of oxygen in various liquid
metals and the procedures are well discussed. (Tare, 1980). The objective of the present investigation is to
obtain a qualitative picture of the dominant convective processes by employing a three dimensional
numerical model and also to compare the qualitative results of this model with careful experiments done by.
Sears et al. (1993) and reconfirmed by the first author of this paper.

Experiments for diffusivity measurements involve the establishing of an oxygen concentration gradient.
Calculations that simulate transient and steady state experiments are therefore given for the cases when the
oxygen is depleted from the liquid metal sample in two different modes- a bottom depletion mode and a top
depletion one. In each mode the liquid metal sample is assumed to be nearly vertical. In the bottom
depletion mode the concentration of oxygen at the bottom of the sample is very small and oxygen is depleted
from that boundary. Therefore the fluid is gravitationally stable in the bottom depletion mode. For this case,
calculations indicate the existence of stable density gradients whereas in the top depletion mode the reverse
is true and solutal convection is predicted depending on the experimental conditions. The distribution of the
oxygen concentration and the flow patterns that were obtained from the simulation studies indicate that the
measured diffusivity can be easily corrupted by solutal convection. This observation is corroborated by
experimental results. The experimental diffusivity measurements were strongly affected by convective
effects in those top depletion experiments that had a higher initial oxygen concentration. However, the
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unsteady state top depletion mode was preferred when the initial oxygen levels were low and the numerica.
model also confirms this. As evidenced from the modeling, the strength of convection observed in a steady
state top heavy arrangement was much larger than the bottom heavy configuration. The results of bott
experiments as well as modeling indicate that solutal convection is greatly enhanced depending on the
experimental conditions. The parameters, which affect the results. are the mode of operation, initial oxyger.
concentration. tilts and heat leakages.

THE MODEL

Figure 1 is a schematic of the problem that was modeled numerically to obtain three dimensional flow fields.
The model that was used assumed that the Boussinesq equations hold. The concentration conditions imposed
on the container depended on the mode and place of oxygen removal. These are shown in Figure 1. The
calculations were done assuming that the fluid is incompressible and Newtonian. The thermophysical
properties of tin used in the calculations are well established and are given in the sources cited by Sears et.al.
(1990). Kao (1993) estimated the solutal expansion coefficient for oxygen in tin as 0.865 /mole fraction, by
using a dilute solution assumption and a simple mixing rule. The value of diffusivity used in the calculations
that predict the flow was obtained from Sears. et. al and was assumed to be 5.7 x 10° m? /s . No-slip
conditions were used at all boundaries. The governing equations, in the general vector form, for the
calculations are:

V-V=0 )

aV s by I 15> -

—T+V-VV=——VP+vV“V+g[ﬂ,(T—To)+,BC(C—C0)]e, )
p

£+I7-VT=V- k vT 3)

ot oC,

%+I7-VC=DV2C 4)

where ¥/, P, T and C are the velocity, pressure temperature and concentration fields. The subscript ©
means a reference state such as the initial state. v, &, p, C , and D are the kinematic viscosity, thermal

conductivity, density, specific heat and mass diffusivity respectively while fr and B, are the thermal and
solutal expansion coefficients.

The equations were solved numerically using a SIMPLE algorithm, a method developed by Patankar
(1980). The diameter of the cylindrical cell was assumed to be 0.73 cm as this was the dimension of the
cell used in the experiments of Sears et. al. and in the present study. The heights of the cell used in the
calculation varied according to the different cases studied and are reported in Table 1.
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RESULTS AND DISCUSSION

As the emphasis in this study was an understanding of the qualitative features of the numerical simulations
of the physical experiment. these features are discussed along with the experimental results. Figure 2
represents the unsteady convection that arises in the top and bottom depletion modes during the
electrochemical titrations.. Note that in both modes of oxygen depletion the container is assumed to be
slightly tilted (z-axis was 2° from the vertical line) with respect to gravity. This is within reason for it is
impossible to restrict the container's orientation within 2° in the actual experiments. Also a heat leakage of 2
degrees is assumed to exist at the sidewalls. At first sight it would appear that the bottom depletion mode
ought to be solutally stable, as the arrangement is bottom heavy with respect to density gradients. However,
convection can always be expected on account of the small tilt. Even though the tilt is extremely small, it is
not negligible causing the concentration gradient to become oblique with respect to the gravity vector and
generating convection immediately. The top depletion mode on the other hand is conditionally unstable even
if the container geometry were vertical as the fluid is in a top-heavy arrangement and the tendency to give
rise to convection is a function of the height of the sample and the initial concentration of oxygen in the tin.
In fact it may be noted from Figure 2 that the convective flows are strong in the top depletion case. The fact
that the oxygen is quickly depleted in the top depletion mode is also very apparent and this causes an
apparent increase in the diffusivity values. This is also seen in the experimental results given in Table 1. The
effect of initial concentration is seen in the comparison of Figure 2 with Figure 3. The essential difference
between these two figures is the initial concentration at the start of the titration procedure. There is however
a difference in the liquid aspect ratios between Figures 2 and 3. The liquid depths and initial conditions as
well as mean temperatures that were assumed in order to obtain Figures 2 through 4 correspond to the
experimental values given in Table 1 while the diameter was assumed to be 0.73 cm. The different liquid



1306 C. Mallika et af.

aspect ratios are of little consequence as the diffusion boundary layer length is comparable in bot
calculations. The diffusion boundary laver changes with slowly time and as the effective aspect ratio 1
determined by the diffusion boundary layer. it can be considered constant for all practical purposes. T
understand how initial concentration plays a role, we recall the unsteady Rayleigh- Bénard problem. We the
observe that under the top depletion scenario a large initial concentration results in a steep unstable densit
gradient and this gives way to an ever more top-heavy arrangement. Here the large concentration gradier
only makes matters worse and promotes convection ultimately corrupting the diffusivity measurements. O
the other hand when we consider the bottom depletion case we observe that the concentration gradier
corresponds to a bottom heavy arrangement and that a steeper concentration gradient simply makes th
system even more stable.

Table 1. Experimental Conditions and Results for the Diffusivity of Oxygen in Liquid Tin

Height of | Temperature Initial oxygen Diff. Coefficient
Titration mode tin (cm) (K) mole fraction (m2 /s)
Bottom 0.389 994 24x 107 7.57 x 107
Transient *
Top 0.389 994 2.4x10% 2.26x 10
Bottom 0.520 845 7.7x 10° 3.43x 107
Transient
Top 0.520 845 7.7x10° 4.63x10%
Bottom 0.579 971 *6.3x 10° 3.05x 10
Steady heavy
state
top 0.579 971 ‘6.3x 107 498x10°%
heavy :

Results reported by Sears et. al. (1993)
The oxygen concentration at the top, °The oxygen concentration at the bottom

From the above it is concluded that large initial concentrations of oxygen in the liquid metal favor a botton
depletion titration method while for small initial concentrations a top depletion mode can be stable. Figure .
shows that the convection is weak in the top depletion mode because the initial concentration is lower her.
than in Figure 2. Neither figure shows the concentrations at the depleting surface, which may be assumed
for all practical purposes. to be zero mole fraction. The simulations of the steady state transport as shown ii
Figure 4 depict the convection to be greater here than in the top depletion mode of unsteady transport. Thi.
happens because the characteristic length in this model is the whole sample height whereas in the transien
mode it is the thickness of the concentration boundary layer, which in turn is a function of time. Note that the
Rayleigh number, a dimensionless group that arises from the scaling of such problems and one which i:
indicative of the strength of the convection is proportional to the cube of the characteristic length scale (ct
Narayanan, 1984). It may be noted that the solutal Rayleigh number for the top-heavy system is estimated tc
be 13859 whereas the calculated value for the bottom heavy configuration is -22595. Hence the strength o
convection is expected to be more in the top-heavy arrangement which is in accordance with the observation
However a slight tilt with the steady state mode is far worse than a similar tilt on the unsteady mode becausc
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the characteristic length scales are so different and the steady state convection that results because of
imperfections due to tilts etc. corrupt the diffusivity measurements more severely.

We conclude that electrochemical titration procedures for diffusivity measurements must be interpreted very
carefully for the titration mode affects the measured diffusivities in varying degrees. The convective flows
that occur are influenced by tilts. heat leakages, initial concentration of oxygen and modes of operation be
they steady or transient.
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Abstract

In this study, pattern formation at the bifurcation point from the quiescent state for free

surface convection in circular containers is determined. A linearized instability calculation that
employs three-dimensional disturbances in the presence of physically realistic side wall boundary
conditions is made. The results of the present study will provide a very useful asymptotic limit for
nonlinear numerical computations. Under restrictive conditions the current calculations check
favorably with those of earlier workers. The results of these studies are shown to be compatible with
the experiments of Koschmieder and Prahl.

Introduction:

The onset of flow from a quiescent state, when a layer of fluid is heated from below with an
upper free surface, is one of the classical problems of fluid mechanical instabilities (1) and also the
subject of many investigations. In this problem, a layer of fluid with an upper free surface is subjected
to a temperature gradient that is perpendicular to the interface and one of the goals is to find the
critical conditions and the associated pattern for the onset of flow from an erstwhile quiescent state.
Curiously, there is a dearth of good experiments on this problem and most of these have been
conducted in geometries of large lateral extent while the theories that model these experiments
assume the absence of vertical side walls. When a free surface is absent, convection is driven solely
by the gravitational field giving rise to ‘Rayleigh' convection while the inclusion of a free surface
means that surface tension gradients also determine the onset conditions as well as the planform of
convective flow. The convective flow driven solely by surface tension gradients is known as the
Marangoni effect (2) and the physical nature of this problem has been recently reviewed by
Koschmieder (3). The present paper is concerned with the effect of lateral side walls on convection
with a free surface. The objectives of this work were to 1) delineate the critical conditions and
patterns at the onset of free surface convection and indicate, for particular fluid systems, the regions
where experiments are best conducted and 2) compare the calculations to recent experiments of
Koschmieder and Prahl (4).

Instability of the quiescent state is often analyzed by linearizing the boundary value problem
about the trivial state and inspecting the eigen-spectrum. The associated Marangoni and Rayleigh
numbers are the critical operating parameters or bifurcation points while the eigenfunctions represent
the patterns at the onset point. Theoretical work on convective onset for purely Marangoni flow in
bounded containers with realistic boundary conditions was done by Vrentas et al. (5), Winters et al.
(6), Dijkstra (7), Duh (8), Van der Vooren and Dijkstra (9). These papers were, however, restricted
to calculations of two dimensional disturbances in either a right circular cylinder or in a rectangle.
Chen et al. (10) attempted to study the pattern formation at the onset in a right circular cylinder but
the results of their study are suspect in that the large aspect ratio results were not consistent with the

'This communication is a brief summary of a paper which is to appear in the Journal of
Colloid and Interface Science (1995)

2Communications to be addressed to this author
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wide geometry calculations of the classical theory by Nield (11), at least for the case of ‘zero'
azimuthal dependence. Moreover, the side wall conditions of ‘insulation' are rarely compatible with
experimental conditions that attempt to satisfy the so called "conducting' case i.e; the situation where
the side walls have the same thermal conductivity as the operating fluid in question. Recently,
Wagner, Narayanan and Friedrich (12), assuming a flat surface, have completed three-dimensional
nonlinear calculations. Here too, the restrictions on the problem were severe in that the gravitational
field was entirely eliminated and the side walls were assumed to be thermally insulating. Nevertheless
their results were curious in that they indicated a lack of transcritical behavior for small aspect ratios
and also showed a transition from three to two dimensional flow as the supercritical Marangoni
number was increased. Note that their results were obtained for the pure Marangoni problem. Other
studies in bounded geometries for lateral boundary conditions of vanishing vertical component of
vorticity (cylindrical geometry) or vanishing stress (rectangular geometry) were performed by
Rosenblat et al. (13 and 14) and McTaggart (15). Dijkstra (16) recently has given the results for a
realistic rectangular geometry. A common result of all of the three-dimensional calculations is that
the aspect ratio and geometry strongly affect the flow structure at and beyond the critical or onset
point.

On account of the restrictions either on the dimensionality or the nature of the boundary
conditions or the gravitational level, these earlier calculations have limitations and are not quite
compatible with experiments. The present work is motivated by the absence of any 3-D calculations
of the convection problem in a laterally bounded container where both Rayleigh and Marangoni
effects are taken into account and also where realistic conditions on the side walls are imposed. We
expect that such a study with both buoyancy and interfacial tension gradients will provide very useful
information on the development of planform structure and will provide the real basis for future
nonlinear numerical studies which in turn are necessary for the correct interpretation of experiments.
This, therefore, is the underling reason for the present communication.

The Model

The model that was analyzed describes a liquid such as oil underlying a gas such as helium
or air as depicted in Figure 1. The governing equations were derived in 8 manner similar to that of
Vrentas et al. (5) with different scale factors. The lower solid boundary has a constant temperature
T, and the upper solid surface has a temperature T, respectively. T; is the temperature of the interface
in the conductive state. To simulate the convection the Boussinesq form of the continuity, Navier-
Stokes and energy equations were used. In what follows the free surface is assumed to be non
deformable. This assumption is mildly restrictive for the case of a liquid superposed by a quiescent
gas as seen by the results of Zhao et al.(17). However in the case of the pure Marangoni problem
relaxation of this assumption is known to lead to a long wave length instability in an unbounded
container. The equations of continuity, momentum, and energy were non-dimensionalized using
different scales (18) and then linear instability theory was applied. The solution technique rests on a
spectral decomposition in the manner used by Chen et al. (10) and Hardin et al. (19). The 'radial'
spectral functions that were used depend on the side wall conditions. The flow pattern at the onset
of convection was obtained from the calculation. These were determined from the eigenfunctions
while the eigenvalues were identified as the critical Marangoni numbers. The Rayleigh and Biot
numbers as well as aspect ratios and azimuthal mode 'm' were fixed in any given calculation. Only
the steady equations were considered because the principle of exchange of stability was assumed.
Earlier calculations of Vidal and Acrivos (20) as well as Takashima (21) indicate this for the
unbounded layer case.



Discussion of the Results

General Comments:

In order to check the reliability of the numerical scheme and the accuracy of the spectral
representation, the first three critical Marangoni numbers or bifurcation points were calculated for
the axisymmetric case ( m=0) and Ra=0 for a variety of aspect ratios at Biot numbers equal to 1 and
100 and these were compared with the corresponding results of Vrentas et al. (5). All of these results
are depicted in Table 1. Moreover, the first bifurcation point was compared with the corresponding
results of Vrentas et al. (5) for the case of Ma=0. and Bi=100. and these are shown at the bottom of
Table 1. We see a discrepancy for the pure Marangoni problem only at small aspect ratios while the
comparison for the pure Rayleigh problem is very good. This discrepancy is reduced for large aspect
ratios .

This Reference! This Referencs* This Reference’ This Reference’

Ma 1 2298 206.0 1339 125.0 1190 1207 1183 1173

Ma 1 m3 10229 2913 13 1529 149.0 1243 1261

Blfurcatiom | 109 | 100600 10051.1 850 49489 38138 38636 3391.0 34461

for First 100 19734 1939.9 11529 12349 11113 11108 10878 10945
i

Table 1. Comparison of the first three critical Ma for Ra=0 and the first critical Ra for Ma=0
for various A and Bi assuming insulating side walls and m=0, with Vrentas et al. (5).

Comparison with Experiments:

As mentioned earlier, there are very few experiments in bounded geometries for the combined
Rayleigh-Marangoni problem. Notable are those of Koschmieder and Prahl (4). It is observed that
in an experiment one cannot fix the Rayleigh number and measure a critical Marangoni number, as



the real operating variable is the temperature difference and this variable occurs in both of the
dimensionless groups. Therefore the critical temperature differences were calculated and the
corresponding critical Rayleigh and Marangoni numbers were reported in Table 2 for the same
conditions as reported by Koschmieder and Prahl (4).

Koscbmlede; & I

| __Case | m Calculated Ma Comments
0 109.94 A=2.16, Ra/Ma=1225, Ma=875,
1 116.67 Bi= 0385, m=0
1 2 114.83 depth of air layer = 0.5 mm AT=7.16°C
depth of the fluid = 2.593 mm
3 119.66
0 104.50 A=2655, Ra/Ma=081, Ma=81,
1 108.00 Bk 0.696, m=2
2 2 104.70 depth of air layer = 0.5 mm AT=8.14°C
depth of the fluld = 2.109 mm '
3 106.70
0 98.80 A=3.295, Ra/Ma=0526, Ma= 7658,
1 103.10 Bi=0.56, m=3
3 2 99.31 depth of air layer = 0.5 mm AT=955°C
H depth of the fluld = 1.699 mm
3 99.81
0 97.90 A= 4.145, Ra/Ma=031 Ma=74,
1 100.84 . Bro7, =3
4 2 98.30 depth of air layer = 0.5 mm AT=T74°C
depth of the fluid =2.12 mm
3 98.32
0 94.07 A=282, Ra/Ma=328, Ma= 178,
5 depth of air layer = 0.5 mm AT=377°C
2 93.79
depth of the fluld = 4.22 mm
3 __ 94.90

Table 2. Comparison of the experimental results of Koschmieder and Prahl with calculations
for various m and with conducting side wall conditions.

The thermophysical properties of the silicone oil/air system used in the experiments are given in Table
3 along with the properties of helium which is a gas that will be used by us in future experiments. The
results for various 'm' are also given in Table 2. The side wall conditions in the calculations were
assumed to be of the "conducting' type. It is seen that most of our calculated critical Marangoni
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numbers are above the experimental measurements by about 22%. This therefore requires an
explanation.

One reason that the predicted critical Marangoni numbers are uniformly greater than the
measured Marangoni numbers is partly due to the transcritical nature of Rayleigh Marangoni
convection. Recent unpublished nonlinear calculations done by the second author of this study show
that the transcritical region for the experiments are within 5% of the critical.

Another reason for the discrepancy is due to possible imperfections induced by side walls. In
studies involving the influence of side walls, small depths mean that the diameter of the containers
must also be small. This leads to the possibility that side wall imperfections will influence the onset
conditions and patterns. These imperfections become more pronounced when the temperature
differences are substantial and it is to be noted that the critical temperature difference for onset
increases with a decrease in liquid depth. Thus even small imperfections can cause us to lose the
bifurcation or sudden onset nature of the problem. A weak flow ensues and an increase in the
temperature difference causes the solution to move along the vicinity of the first branch emanating
from the first bifurcation point.

A third reason for the discrepancy between the model and experiments is due to an uncertainty
in thermophysical properties. The ‘over prediction’ of the critical Marangoni numbers is entirely
consistent with the fact that visual detection of the onset point is known within 10% and most but
not all of the thermophysical properties are known within 10%. The greatest uncertainty in
thermophysical properties is in the dynamic viscosity. It has been our past experience (22) that Dow
Corning silicone oils which are labeled 100 centipoise often have a mean dynamic viscosity of about
15-20% less than what that label would indicate. This fact alone is enough to explain the apparent
discrepancy between our predicted results and those reported by Koschmieder and Prahl making their
adjusted results very close to our predictions. These facts in conjunction with the imperfections cited
above can explain the theoretical over prediction of the experimentally determined critical Marangoni
numbers.

p

(& 11)

Silicone Oll | 0.00096 1 0.001095 | 0.001588 0.968
Alr 000333 | 0157 | o.1818 0.000262 0.0012 0.05

L_Helium | 0003326 | 1.22 1779 0015 | 0.0001627

Table 3. Physical properties of fluids used in typical experiments.

We now comment on the predicted and observed patterns. The predicted pattern at the onset
of convection is the same as obtained by Koschmieder and Prahl for the aspect ratio of 2.16 but
differs from the experimental ones for the other aspect ratios that are reported in Table 2. The
calculated bifurcation points or critical Ma, that correspond to the various values of 'm’, are clustered
for all aspect ratios greater than 2.16. In fact for the larger aspect ratios it is seen that the first two
critical Ma are within about 1 % of each other. Now it may be noted from the work of Tavantzis et-



al. (23) and Matkowsky and Reiss (24) that characteristics of the solutions along the first branch are
strongly influenced not only by the eigenvector at the first bifurcation point but also by the
eigenvectors that are associated with the subsequent nearby eigenvalues. As a result small
imperfections on problems with moderate aspect ratios, where bunching of solutions takes place will
easily cause us to experimentally obtain patterns that are different from the ones that are predicted
by the first bifurcation point obtained by linear theory which assumes perfect or ideal conditions. In
other words, mild imperfections and clustering of bifurcation points cause us to believe that there
is no substantial contradiction between the predicted patterns in our results and those of Koschmieder
and Prahl (4). While this is so, it suffices to say that experiments are better predicted by calculations
that consider both the non ideal or ‘imperfect' nature of walls and the transient nonlinear interactions
so as to allow us to go beyond the onset point of convective flow and also consider transcritical
behavior.

Figures 2a through 5b represent the three-dimensional patterns and the corresponding
planforms at a specific "z’ level for various values of 'm". It is clear that for ‘m' = 0 we have
axisymmetry while for *m' =1 the flow is exactly antisymmetric every n radians. When 'm'=2,3 the
antisymmetry occurs every /2 and n/3 radians. The calculations are shown for case 5 in Table 2 and
it may be seen that the experiments of Koschmieder and Prahl (4) indicate a 'm' =3 flow while
calculations predict ‘m'=2 to be the most unstable. However the modes 'm'=0,2, and 3 are within 1%
of each other and given the difficulty in controlling temperature differences, it is conceivable that
pattern switching could easily take place.

We point out that the second author has, in collaboration, with others recently conducted
experiments in three different aspect ratios ( 2.53, 1.49 and 0.75). The modes that are predicted by
our method for these aspect ratios are m=0, m=0 and m=1 respectively and coincide precisely with
those observed in these experiments. Moreover the mode m=2 is very close to the m=0 mode for the
aspect ratio 2.53 and the experiments also bear this out by generating pattern switching behavior.

Summary: .

The critical conditions and patterns for the onset of three-dimensional convection in bounded
circular containers were obtained. It was found that for a large range of aspect ratios the
axisymmetric mode or 'm=0’ mode is the most unstable and that codimension 2 points occur for either
large or somewhat small (< 1.0) aspect ratios. The comparison with existing experimental patterns
is within reason but not exact and we have rationalized that this is possibly due to the effect of
imperfections on geometries that encourage closely bunched eigenmodes. A reason for the apparent
discrepancy between predicted and experimentally determined critical Ma is that the experimental
results have assumed the correctness of the viscosity of the test fluid as stated by the manufacturer
and we believe that the actual viscosity is substantially less. We believe that this is the major reason
that might explain the difference in reported critical values of the experiment and those predicted by
the theory. Calculations in deep layers and narrow containers show promise of future experimental
verification.
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Figure 1. Schematic of the physical system.
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In this study, pattern formation at the bifurcation point from the
quiescent state for free surface convection in circular containers is
determined. A linearized instability calculation that employs three-
dimensional disturbances in the presence of physically realistic
side wall boundary conditions is made. The resuits of the present
study will provide a very useful asymptotic limit for nonlinear
numerical computations. Under restrictive conditions the current
calculations check favorably with those of earlier workers. The
results of these studies are compared with the experiments of
Koschmieder and Prahl (J. Fluid Mech. 251, 571, 1990). o 19%
Academic Press, Inc.

Key Words: Marangoni—Bénard convection; instability; pattern
formation; bifurcation.

INTRODUCTION

The onset of flow from a quiescent state, when a layer of
fluid is heated from below with an upper free surface, is one
of the classical problems of fluid mechanical instabilities
(1) and also the subject of many investigations. In this prob-
lem, a layer of fluid with an upper free surface is subjected
to a temperature gradient that is perpendicular to the inter-
face and one of the goals is to find the critical conditions
and the associated pattern for the onset of flow from an
erstwhile quiescent state. Curiously, there is a dearth of good
experiments on this problem and most of these have been
conducted in geometries of large lateral extent, while the
theories that model these experiments assume the absence
of vertical side walls. When a free surface is absent, convec-
tion is driven solely by the gravitational field giving rise to
‘‘Rayleigh’’ convection, while the inclusion of a free surface
means that surface tension gradients also determine the onset
conditions as well as the planform of convective flow. The
convective flow driven solely by surface tension gradients
is known as the Marangoni effect ( 2) and the physical nature
of this problem has been recently reviewed by Koschmieder
(3). The present paper is concerned with the effect of lateral
side walls on convection with a tree surface. The problem

' To whom correspondence shouid be addressed.
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of pattern formation as affected by side walls is strongly
connected to crystal growth by the Bridgman technique. In
fact, during crystal growth, the aspect ratio is ever changing
on account of the moving interface. But this is not the only
reason why this problem is being studied. Convection experi-
ments are necessarily done in closed containers and the cor-
rect interpretation of these experiments requires a theory that
is closely connected to them. Moreover detailed numerical
calculations that examine the splitting of solutions and gener-
ation of cascaded bifurcation as the aspect ratio of the con-
tainers increase must be checked with appropriate asymp-
totic models of which the current study is an important one.
Experiments by Koschmieder and Prahl (4) on convection
in a laterally bounded container show the marked effect
that the geometry has on pattern selection. The theoretical
investigations of the onset of free surface convection in
bounded containers are restricted and are approximate in
many ways and none thus far have been posed so as to
closely replicate experimental conditions. As a result, it has
not been heretofore possible to examine whether the essential
qualitative features of the actual problem have been retained
by the approximate models. It is therefore the objective of
this work to delineate the critical conditions and patterns at
the onset of free surface convection and indicate, for particu-
lar fluid systems, the regions where experiments are best
conducted. Another objective is to compare the calculations
to recent experiments of Koschmieder and Prahl (4).
Instability of the quiescent state is often analyzed by lin-
earizing the boundary value problem about the trivial state
and inspecting the eigenspectrum. The associated Marangoni
and Rayleigh numbers are the critical operating parameters
or bifurcation points, while the eigenfunctions represent the
patterns at the onset point. Theoretical work on convective
onset for purely Marangoni flow in bounded containers with
realistic boundary conditions was done by Vrentas et al. (5),
Winters et al. (6), Dijkstra (7), Duh (8), and Van der
Vooren and Dijkstra (9). These papers were, however, re-
stricted to calculations of two-dimensional disturbances ei-
ther in a right circular cylinder or in a rectangle. Some of
these studies indicated the existence of a transcritical region
in the vicinity of the onset of flow. This means that convec-

0021-9797/96 $18.00
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tive flow could begin ahead of the theoretically predicted
bifurcation point or onset point. The same studies also
showed that the transcritical region decreases as the width
of the container increases. Chen et al. (10) attempted to
study the pattern formation at the onset in a right circular
cylinder but the results of their study are suspect in that the
large aspect ratio results were not consistent with the wide
geometry calculations of the classical theory by Nield (11),
at least for the case of ‘‘zero’’ azimuthal dependence. More-
over, the side wall conditions of ‘‘insulation’’ are rarely
compatible with experimental conditions that attempt to sat-
isfy the so called *‘conducting’’ case, i.e., the situation where
the side walls have the same thermal conductivity as the
operating fluid in question. Recently, Wagner et al. (12),
assuming a flat surface, have completed three-dimensional
nonlinear calculations. Here too, the restrictions on the prob-
lem were severe in that the gravitational field was entirely
eliminated and the side walls were assumed to be thermaily
insulating. Nevertheless their results were curious in that
they indicated a lack of transcritical behavior for small aspect
ratios and also showed a transition from three- to two-dimen-
sional flow as the supercritical Marangoni number was in-
creased. Note that their results were obtained for the pure
Marangoni problem. Other studies in bounded geometries
for lateral boundary conditions of vanishing vertical compo-
nent of vorticity (cylindrical geometry) or vanishing stress
(rectangular geometry) were performed by Rosenblat er al.
(13, 14) and McTaggart (15). Dijkstra (16) recently has
given the results for a realistic rectangular geometry. A com-
mon result of all of the three-dimensional calculations is
that the aspect ratio and geometry strongly affect the flow
structure at and beyond the critical or onset point.

On account of the restrictions either on the dimensionality
or on the nature of the boundary conditions or the gravita-
tional level, these earlier calculations have limitations and
are not quite compatible with experiments. The present work
is motivated by the absence of any 3-D calculations of the
convection problem in a laterally bounded container where
both Rayleigh and Marangoni effects are taken into account
and .also where realistic conditions on the side walls are
imposed. We expect that such a study with both buoyancy
and interfacial tension gradients will provide very useful
information on the development of planform structure and
will provide the real basis for future nonlinear numerical
studies which in turn are necessary for the correct interpreta-
tion of experiments. This, therefore, is the underling reason
for the present communication.

THE MODEL

The model that was analyzed describes a liquid such as
oil underlying a gas such as helium or air as depicted in Fig.
1. The governing equations were derived in a manner similar
to that of Vrentas et al. (5) with different scale factors and
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FIG. 1. Schematic of the physical system.

so, for brevity, the intermediate details are dispensed with.
The lower solid boundary has a constant temperature T, and
the upper solid surface has a temperature T, respectively.
T; is the temperature of the interface in the conductive state.
To simulate the convection the Boussinesq form of the conti-
nuity, Navier—Stokes, and energy equations were used.

In order to get nondimensional forms of the above-men-
tioned equations, the scale factors for radial and axial dis-
tance, velocity, time, and pressure were introduced. These
are R, H, 0\ SH/ u, (H)*/«, and 0,8, respectively. Here o,
which is usually positive, is the temperature coefficient of
surface tension, S is the temperature gradient in the liquid,
« is the thermal diffusivity of the lower or liquid phase, y is
its dynamic viscosity, and H is its depth. The dimensionless
temperature T was scaled with respect to the temperature
gradient in the liquid phase. In what follows, the free surface
is assumed to be nondeformable. This assumption is mildly
restrictive for the case of a liquid superposed by a quiescent
gas as seen by the results of Zhao er al. (17). However, in
the case of the pure Marangoni problem relaxation of this
assumption is known to lead to a long wavelength instability
in an unbounded container.

The linearized equations of continuity, momentum, and
energy will be given below. Here P is the pressure field and
Ra is the Rayleigh number referred to the lower phase and
Ma is the Marangoni number, while Pr is the Prandtl number.
U, V, and W are the dimensionless radial, azimuthal, and
vertical components of velocity, respectively. Assuming the
Boussinesq approximation, the perturbed form for the depen-
dent variables follows.

The continuity equation is

1 & 1 oV
A—ra(rU) +

ow

——+ —=0. 1

Ar 60 0z [
The r, 8, and z components of the equations of motion

for an incompressible Newtonian fluid become
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The energy equation is

ﬂ' = Ma~'VT + W.
ot

(51
Here A is the aspect ratio (R/H) and the Laplacian operator
is

62
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For the lower solid surface that bounds the system no slip
was assumed, yielding vanishing velocities. The temperature
is assumed to be uniform at the bottom.

At the interface we have Newton’s law of cooling

oT
— + BiT = 0.
0z '

(7]

A momentum balance at the interface gives the following
conditions for the tangential component

_av
0z

1 gT

Ar 66

_62 + _1. 27_- = [8]
0z A or
The equation of state for the interfacial tension was used.
This takes into account the temperature dependence o, of
the interfacial tension in a manner similar to the equation
of state for the density, in the Boussinesq approximation.
The Rayleigh and Marangoni numbers are given by

2
Ma = 288 (9]
uK
4
Ra = Mgi , [10]
UK

where a is the coefficient of thermal expansion.
The Prandtl (Pr) and Biot number (Bi) are given by

Pr=1t

pPK

(11]

153

(12]

where 4 is the heat transfer coefficient and & is the thermal
conductivity.

The thermal conditions on the side walls are either perfect
insulation or perfect conduction. In the latter case the con-
ductivity of the side walls are the same as that of the liquid
so that both will have the same constant vertical temperature
gradient in the trivial state.

The trivial solution to the above problem is given by
the quiescent, conductive state in the liquid layer with the
hydrostatic pressure gradient balancing the buoyancy. Linear
instability theory was applied, by expanding the unknown
variables in a perturbation series around the trivial solution.
The solution technique rests on a spectral decomposition in
the manner used by Chen er al. (10) and Hardin et al. (18).
The ‘‘radial’’ spectral functions that were used depend on
the side wall conditions. The flow pattern at the onset of
convection was obtained from the calculation. These were
determined from the eigenfunctions while the eigenvalues
were identified as the critical Marangoni numbers. The Ray-
leigh and Biot numbers as well as aspect ratios and azimuthal
mode m were fixed in any given calculation. Only the steady
equations were considered because the principle of exchange
of stability was assumed. Earlier calculations of Vidal and
Acrivos (19) as well as Takashima (20) indicate this for
the unbounded layer case. The three-dimensional linearized
equations were converted into a simpler set using the trans-
formations (10)

U(r, 8,2) = U'(r, z)cos mf
V(r,0,z) = V'(r, z)sin mé
W(r, 8,z) = W’'(r, z)cos mé
P(r,0,z) = P'(r, z)cos mb

T(r, 9, z) = T'(r, z)cos mf (13]

and
Oy
U'=--=-
oz
yr =
oz
3]
P - — 14
aror 7P T4 [14]

The dependent variables ¢, w, and T’ were then expanded
into various spatial components by applying a spectral repre-
sentation as follows:
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o =2 AT)XT(r)

Jj=1

w= 2 BMYT(r)

j=

T' =Y CHZ](r).

j=

(15]

The Appendix contains some of the essential details on
the form of the spectral functions. The residuals obtained as
a result of incorporating the spectral representation were
made orthogonal to the basis functions as required in a Galer-
kin technique. This resuited in a set of ordinary differential
equations that depended on the vertical coordinate. These
were then finite differenced in the ‘‘vertical direction’” with
second-order accuracy and a set of linear homogeneous alge-
braic equations were obtained where Ra and Bi as well as
aspect ratio and m were treated as input variables and the
critical Marangoni numbers were obtained as eigenvalues.
This last procedure was accomplished using an IMSL code
G8CRG.

Figure 2 shows an example of the variation of critical
Marangoni numbers with the number of vertical grid points
and number of radial eigenfunctions used. It was typically
seen that 25 radial terms and 30 vertical grid points sufficed
to delineate the physical nature of the problem.

DISCUSSION OF THE RESULTS

General Comments

In order to check the reliability of the numerical scheme
and the accuracy of the spectral representation, the first three
critical Marangoni numbers or bifurcation points were calcu-
lated for the axisymmetric case (m = 0) and Ra = 0 for a
variety of aspect ratios at Biot numbers equal to | and 100

and these were compared with the corresponding results of
Vrentas ef al. (5). All of these results are depicted in Table
1. Moreover, the first bifurcation point was compared with
the corresponding results of Vrentas et al. (5) for the case
of Ma = 0 and Bi = 100 and these are shown at the bottom
of Table 1. We see a discrepancy for the pure Marangoni
problem only at small aspect ratios while the comparison
for the pure Rayleigh problem is very good. A brief explana-
tion for this is offered.

The study of Vrentas et al. (5) involved two separate
cases. These were the pure Marangoni and the pure Rayleigh
problems. The eigenfunction in the former was the tempera-
ture field at the free surface and resulted from the consider-
ation of a matrix of order n where n represents the number of
radial terms during the spectral expansion. However, when
Vrentas ef al. (5) considered the pure Rayleigh problem the
eigenmatrix was of order n? where now the number of radial
and vertical terms in the eigenfunction expansion were equal.
Had they looked at the combined Rayleigh—Marangoni case
they would have an order n? matrix as well, no matter what
value of Ra was chosen. Now, the larger the number of
radial and vertical terms, the more accurate the result. And
so we can expect the accuracy of the combined Rayleigh—
Marangoni problem, in the limit of Ra = 0, to be lower than
the pure Marangoni problem unless a very large number of
terms are used. In the present study an eigenmatrix of order
n(k — 1) results where k is the number of finite difference
intervals in the vertical direction and n is the number of
radial terms. Therefore the rate of convergence in our prob-
lem where Ra = 0 is different and lower than that in the
pure Marangoni case studied by Vrentas ez al. (5). This
is why we have a discrepancy between our results. This
discrepancy is reduced for large aspect ratios and as expected
the comparison is quite favorable when the pure Rayleigh
problem is considered.

Table 2 shows the calculated lowest critical Marangoni
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TABLE 1
Comparison of the First Three Critical Ma for Ra = 0 (Bifurcation Points) and the First Critical Ra for Ma = 0
for Various A and Bi Assuming Insulating Side Walls and m = 0, with Vrentas et al. (5)

A=l A=2 A=4 A=8
This Reference This Reference This Reference This Reference
Bi work 4 work 4) work 4) work 4)

Ma for first 1 229.5 206.0 133.9 125.0 119.0 120.7 115.3 117.2
bifurcation 100 4579.0 4272.5 3585.0 3589.4 33164 3376.1 3264.0 3318.8
point

Ma for second 1 542.8 531.6 1840 167.1 131.8 128.2 1184 119.4
bifurcation 100 7281.0 7030.5 4360.0 4197.5 34927 35214 33110 3365.7
point

Ma for third 1 972.3 10229 292.3 2823 1529 149.0 124.3 126.1
bifurcation 100 10060.0 10051.1 5285.0 4948.9 3813.5 3863.6 3391.0 3446.1
point

Ra for first 100 1978.6 1939.0 12529 1234.9 1111.3 1110.8 1087.5 1094.5
bifurcation
point

numbers for a variety of aspect ratios and various m at differ-
ent values of Ra and Bi. The last column of Table 2 gives
the critical Marangoni numbers obtained from Nield (11)
for the case of infinitely wide layers. It can be seen that the
calculated results approach Nield's results for aspect ratios
greater than 8 and are within the asymptotic values of Nield
(11) by 1.2% for all the values of m assumed. It is further
noted that the results of Chen er al. (10) did not approach
Nield's values for the case of m = 0 and are therefore in
disagreement with our calculations. It is felt that this is a
consequence of inaccuracies in their calculations and in fact
this is one reason that caused us to repeat the computations.
We comment on this further in the Appendix.

Table 3 shows the comparison in critical Marangoni
numbers between the case of insulated and conducting
side walls and in nearly all cases it can be seen that the
case of conducting side wails leads to higher Marangoni
numbers, thereby indicating greater stability to distur-
bances. In this regard the problem is similar to the pure
Rayleigh problem wherein one can show from self-adjoint
operators that conducting side walls in a container of arbi-
trary shape leads to greater stability. A similar proof is not
available for the combined Rayleigh—Marangoni problem.
Likewise it can be shown from self-adjoint operators that
the critical Rayleigh numbers in cylindrical containers
scales with geometry such that

TABLE 2
Critical Marangoni Number for Various m, Bi, and Ra for Insulating Walls

Critical Marangoni numbers for

Nield's
Ra Bi m A=1 A=2 A=3 A=4d A=38 resuit
100 0 0 175.4 82.3 74.7 71.1 68.2 68.9
1 107.8 87.2 73.1 71.6 68.7
2 145.6 87.3 722 70.8 68.1
3 235.2 89.9 779 69.6 68.2
0 1 0 229.5 1339 121.8 119.0 115.3 116.1
1 177.7 133.6 127.2 119.5 1159
2 203.5 142.5 119.0 118.5 115.5
3 297.8 143.2 123.6 118.2 115.1
100 0.2 0 184.3 90.2 81.6 78.4 752 759
1 119.3 93.9 81.4 78.5 76.1
2 155.0 96.7 78.9 78.4 75.0
3 246.2 98.2 84.7 76.8 752
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TABLE 3
Comparison of Critical Ma for Insulating and Conducting Side Walls and Various Ra, Bi, and m

Critical Marangoni Numbers for

Wall

Ra Bi m condition A=1 A=2 A=3 A=4 A=8
1 100 0 Insulating 219.8 120.7 108.5 105.7 101.8
Conducting 239.5 121.9 109.5 105.6 101.8
1 100 2 Insulating 289.8 1303 110.6 104.7 101.5
Conducting 369.3 138.7 110.3 105.6 1018

d(RaA*) 16 Therefore the critical temperature differences were calcu-

o(1/4) (18] Jated and the corresponding critical Rayleigh and Marangoni

No such analytical result is available for the combined
Rayleigh—Marangoni problem because of the non-self-ad-
joint nature of the linearized equations. Nevertheless, calcu-
lations were performed to inspect the behavior of critical
Marangoni numbers with aspect ratios and these are shown
in Fig. 3. Only for the case of m = 1 do local maxima and
minima occur, whereas for all other values of m a nonmono-
tonic variation of Marangoni numbers with aspect ratios
could not be detected. In fact there are regions where the
Marangoni number changes very little and thereafter for a
further increase in aspect ratio a drop in the computed critical
Marangoni numbers is not seen.

Comparison with Experiments

As mentioned earlier, there are very few experiments in
bounded geometries for the combined Rayleigh—Marangoni
problem. Notable are those of Koschmieder and Prahl (4). 1t
is observed that in an experiment one cannot fix the Rayleigh
number and measure a critical Marangoni number, as the
real operating variable is the temperature difference, and
this variable occurs in both of the dimensionless groups.

4000

3000 —

1

2000 |—
1000 —
. ! N ] A ! ; ]
0.0 1.0 20 3.0 0 50
Aspect Ratio
FIG. 3. Critical Marangoni numbers versus aspect ratio for various

modes for the case of Ra = 100 and Bi = I.

numbers are reported in Table 5 for the same conditions as
reported by Koschmieder and Prahl (4). The thermophysical
properties of the silicone oil/air system used in the experi-
ments are given in Table 4 along with the properties of
helium which is a gas that will be used by us in future
experiments, on account of its high thermal conductivity,
and for which some calculations are reported in this paper.
The results for various m are also given in Table 5. The side
wall conditions in the calculations were assumed to be of
the ‘‘conducting’’ type. It is seen that most of our calculated
critical Marangoni numbers are above the experimental mea-
surements by about 22%. This therefore requires an explana-
tion.

One reason that the predicted critical Marangoni numbers
are uniformly greater than the measured Marangoni numbers
is partly due to the transcritical nature of Rayleigh Maran-
goni convection. Recent unpublished nonlinear calculations
done by the second author of this study show that the trans-
critical region for the experiments are within 5% of the
critical. -

Another reason for the discrepancy is due to possible im-
perfections induced by side walls. In studies involving the
influence of side walls. small depths mean that the diameter
of the containers must also be small. This leads to the possi-
bility that side wall imperfections will influence the onset
conditions and patterns. These imperfections become more
pronounced when the temperature differences are substan-
tial, and it is to be noted that the critical temperature differ-
ence for onset increases with a decrease in liquid depth.
Thus even small imperfections can cause us to lose the bifur-
cation or sudden onset nature of the problem. A weak flow
ensues and an increase in the temperature difference causes
the solution to move along the vicinity of the first branch
emanating from the first bifurcation point.

A third reason for the discrepancy between the model
and experiments is due to an uncertainty in thermophysical
properties. The *‘overprediction’” of the critical Marangoni
numbers is entirely consistent with the fact that visual detec-
tion of the onset point is known within 10% and most but
not all of the thermophysical properties are known within
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TABLE 4
Physical Properties of Fluids Used in Typical Experiments

v

(—00/97) oil-fluid

a (°C™" (cm*/s) x (cm?/s) k (W/cm K) p (g/cm’) (dyn/cm °C)
Silicone oil 0.00096 1 0.001095 0.001588 0.968 0.05
Air 0.00333 0.157 0.1818 0.000262 0.0012
Helium 0.003326 1.22 1.770 0.0015 0.0001627

10%. The greatest uncertainty in thermophysical properties
is in the dynamic viscosity. It has been our past experience
(21) that Dow Coming silicone oils which are labeled 100
cP often have a mean dynamic viscosity of about 15-20%
less than what that label would indicate. This fact alone is
enough to expiain the apparent discrepancy between our
predicted results and those reported by Koschmieder and
Prahl, making their adjusted results very close to our predic-
tions. These facts in conjunction with the imperfections cited
above can explain the theoretical overprediction of the exper-
imentally determined critical Marangoni numbers.

We now comment on the predicted and observed patterns.
The predicted pattern at the onset of convection is the same
as that obtained by Koschmieder and Prahl for the aspect
ratio of 2.16 but differs from the experimental ones for the
other aspect ratios that are reported in Table 5. From Table
5 one can also see that the calculated bifurcation points or

critical Ma that correspond to the various values of m, are
clustered for all aspect ratios greater than 2.16. In fact for
the larger aspect ratios it is seen that the first two critical
Ma are within about 1% of each other. Now it may be noted
from the work of Tavantzis er al. (22) and Matkowsky and
Reiss (23) that characteristics of the solutions along the first
branch are strongly influenced not only by the eigenvector
at the first bifurcation point but also by the eigenvectors that
are associated with the subsequent nearby eigenvalues. In
other words the solution along the branch that emanates from
the lowest critical Marangoni number has characteristics that
depend not only on the eigenvector or pattern that is associ-
ated with the lowest Ma (bifurcation point) but also on the
eigenvectors that are associated with the subsequent nearby
higher bifurcation points. As a result, small imperfections
on problems with moderate aspect ratios, where bunching of
solutions takes place, will easily cause us to experimentally

TABLE 5
Comparison of the Experimental Results of Koschmieder and Prahl with Calculations for Various m and
with Conducting Side Wall Conditions

Calculated Koschmieder and
Case m Ma Comments Prahl’s results
1 0 109.94 A = 2.16, Ra/Ma = 1.225, Bi = 0.85, Ma = 875, m = 0.
1 116.67 depth of air layer = 0.5 mm, depth of AT = 7.16°C
2 114.83 the fluid = 2.593 mm
3 119.66
2 0 104.50 A = 2.655, Ra/Ma = 0.81, Bi = 0.696, Ma = 8l.m = 2,
1 108.00 depth of air layer = 0.5 mm, depth of AT = 8.14°C
2 104.70 the fluid = 2.109 mm
3 106.70
3 0 98.80 A = 3.295, Ra’Ma = 0.526, Bi = 0.56, Ma =765 m =3,
1 103.10 depth of air layer = 0.5 mm, depth of AT = 9.55°C
2 99.31 the fluid = 1.699 mm
3 99.81
4 0 97.90 A = 4.145, Ra/Ma = 0.81, Bi = 0.7, Ma =74, m=3,
1 100.84 depth of air layer = 0.5 mm. depth of AT = 74°C
2 98.30 the fluid = 2.12 mm
3 98.32
5 0 94.07 A = 2.82, Ra/Ma = 3.25, Bi = 1.39, Ma =75 m=3,
I 98.80 depth of air layer = 0.5 mm, depth of AT = 3.77°C
2 93.79 the fiuid = 4.22 mm
3 94.90
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b

FIG. 4. Depiction of 3-D profiles and planforms of the velocity eigensolutions at m = 0 with Ra = 305.85, Ma = 94.07, and A = 2.82.

obtain patterns that are different from those predicted by
the first bifurcation point obtained by linear theory which
assumes perfect or ideal conditions. In other words, mild
imperfections and clustering of bifurcation points cause us
to believe that there is no substantial contradiction between
the predicted patterns in our results and those of Kosch-
mieder and Prahl (4). While this is so, it suffices to say that
experiments are better predicted by calculations that consider
both the nonideal or the ‘‘imperfect’”’ nature of walls and
the transient nonlinear interactions so as to allow us to go
beyond the onset point of convective flow and also consider
transcritical behavior. The utility of the present study is to
provide a good starting point toward such nonlinear calcula-
tions.

Figures 4 through 7 represent the three-dimensional pat-
terns and the corresponding planforms at a specific z level
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for various values of m. It is clear that for m = 0 we have
axisymmetry, while for m = 1 the flow is exactly antisym-
metric every 7 radians. When m = 2 or 3 the antisymmetry
occurs every w/2 and w/3 radians. The calculations are
shown for case 5 in Table 5 and it may be seen that the
experiments of Koschmieder and Prahl (4) indicate a m =
3 flow, while calculations predict m = 2 to be the most
unstable. However, the modes m = 0, 2, and 3 are within
1% of each other and given the difficuity in controlling
temperature differences, it is conceivable that pattern switch-
ing could easily take place.

We point out that the second author has, in collaboration,
with others recently conducted experiments in three different
aspect ratios (2.53, 1.49, and 0.75). The modes that are
predicted by our method for these aspect ratios are m = 0,
m = 0, and m = 1, respectively, and coincide precisely with

Depiction of 3-D profiles and planforms of the velocity eigensolutions at m = | with Ra = 319.35, Ma = 98.28, and A = 2.82.
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FIG. 6. Depiction of 3-D profiles and planforms of the velocity cigensoiutions at m = 2 with Ra = 304.85, Ma = 93.8, and A = 2.82.

those observed in these experiments. Moreover the mode m
= 2 is very close to the m = 0 mode for the aspect ratio
2.53, and the experiments also bear this out by generating
pattern switching behavior.

Other Calculations

Finally, a set of results are presented in Table 6 for various
fluid depths and Biot numbers, some of which may be veri-
fied experimentally. Using the thermophysical properties of
silicone oil/air and various depths of liquid the critical Mar-
angoni numbers are given for various values of m. Another
parameter that is fixed is the Biot number and two values,
viz. 1/7 and 1, were chosen. The value of Biot number of
1/7 corresponds to an air thickness equal to the liquid depth,

while the Biot number of unity corresponds to the use of
helium as the upper gas of the same thickness as the liquid.
The relative importance of Rayleigh to Marangoni effects
are given by the ratio (Ra/Ma = pagH*/o,). This group
is independent of the temperature difference and may be
adjusted mainly by changing the depth of liquid or the gravi-
tational level. It represents the importance of buoyancy or
gravitational effects compared to surface tension gradient
effects.

It is observed from Table 6 that, regardless of the value
of Ra/Ma, the critical Ma are closely bunched for aspect
ratios greater than 1.5. If one wishes to study the effect of
side walls and also simulate a low-gravity environment by
performing ground-based experiments, it is necessary to
have very small depths and consequently very small diame-

FIG. 7. Depiction of 3-D profiles and planforms of the velocity eigensolutions at m = 3 with Ra = 30843, Ma = 949, and A = 2.82.
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TABLE 6
Critical Marangoni Numbers for Various Ra/Ma, m, and Bi

Critical Marangoni numbers for

Biot Depth Ra/Ma m A=05 A=10 A=15 A=20 A=25 =30
117 1 0.1823 0 - 206.75 121.49 100.66 94.11 90.06
1 — 214.47 133.57 105.58 95.95 92.95

2 — 266.29 147.15 110.25 95.32 89.45

3 —_ 330.53 168.64 118.15 98.70 90.84

2 0.73 0 — 197.58 114.82 95.25 88.78 84.88

1 — 205.20 126.81 99.80 90.54 87.72

2 — 255.89 139.89 104.29 89.96 84.34

3 — 319.90 159.48 111.82 93.13 85.67

1 1 0.1823 0 — 247.10 153.38 132.12 125.61 120.50
1 — 258.30 169.90 138.87 128.90 125.47

2 — 308.66 180.84 141.44 125.85 119.79

3 — 376.46 202.74 148.65 128.62 121.30

2 0.73 0 — 234.85 143.80 123.82 117.30 112.45

1 —_ 245.67 160.00 129.97 120.55 117.30

2 — 295.20 170.47 132.55 117.65 112.30

3 — 363.10 191.70 139.44 1120.33 113.22

177 5 4.56 0 661.12 147.30 81.65 67.50 62.97 60.11
1 55341 153.90 91.97 71.22 64.38 62.38

2 869.40 195.30 101.57 74.62 63.86 59.75

3 1104.44 253.67 117.87 80.10 66.27 60.70

ters. Naturally this raises the issue of imperfections and
moreover the small cell diameters make physical visualiza-
tion of the flow difficult. On the other hand larger aspect
ratios cause the clustering of eigenmodes and patterns and
all of the issues raised earlier become relevant. It may also
be seen from Table 6 that the general nature of our comments
remain unchanged merely by changing the Biot number.
Further it is observed from Table 6 that at aspect ratio 2.5
the most critical mode corresponds to m = 0 and at aspect
ratio of 3 the most critical mode is m = 2. This means that
a codimension 2 point occurs between aspect ratios 2.5 and
3. There is little doubt that such points are difficult to capture
experimentally, once again because of the clustering of the
bifarcation points or critical Ma. However, it is also observed
from the calculation for a depth of 5 mm that another codi-
mension 2 point (showing the switch between an m = 1
mode and an m = ( mode) occurs between aspect ratios 0.5
and 1. Given these low aspect ratios it is conceivable that
this multiple point can be captured in a careful experiment
with reasonably deep layers.

From our calculations the following general statements
may be made. First, narrow aspect ratio containers give rise
to definite patterns at the onset of convection that are stable
because the bifurcation points are not closely bunched. We
expect that very large aspect ratio containers will simulate
the infinitely wide case of classical theory, giving rise to
hexagons as seen in earlier experiments. However the me-

dium aspect ratio containers (aspect ratios >3) will show
spectral crowding and close branches. As it will be difficult
to control the temperature differences accurately, it will be
hard to get good agreement between theory and experiment
at these intermediate aspect ratios. In other words it is better
to conduct experiments either in very large geometries where
end effécts are negligible or in very narrow aspect ratio
containers where spectral crowding is absent. While the me-
dium aspect ratio containers could give theoretically pre-
dicted Marangoni numbers, the predicted patterns will be
difficult to obtain experimentally because of the spectral
crowding.

Second, experimental studies in narrow aspect ratio con-
tainers are best conducted in deep layers so that the radius
of the containers may be large and side wall imperfections
such as a mismatch in thermal conductivities and a ‘‘min-
iscus’’ may be minimized. Minscus problems are likely to
be encountered in narrow containers. In deep layers?
Ra/Ma will be necessarily large and if we are to get predicted
patterns in narrow aspect ratio containers, it will not be
possible to bias the problem in favor of the Marangoni effect

It is of course possible to choose a liquid with a very low density and
thermal expansion coefficient: however, most experiments are conducted
with silicone oils because of their nearly constant properties and clean
interfaces. As a resuit Ra/Ma is typically large when the depths are greater
than 2 mm.
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and minimize the Rayleigh phenomenon. The effect of all
of this is that in narrow aspect ratio containers convective
instability experiments will invariably be buoyancy driven
with a Marangoni perturbation and not the other way.

As a final note to readers of this journal we could take a
look at this paper from a different perspective and use the
calculations and companion experiments to predict the sur-
face tension gradient (90 /8T), provided that we have a
good idea of the other thermophysical properties. In other
words these bifurcation calculations are a good approxima-
tion to carefully controlled experiments and can be used for
parameter identification.

SUMMARY

The critical conditions and patterns for the onset of three-
dimensional convection in bounded circular containers were
obtained. It was found that for a large range of aspect ratios
the axisymmetric mode or m = 0 mode is the most unstable
and that codimension 2 points occur for either large or some-
what small (<1.0) aspect ratios. The comparison with ex-
isting experimental patterns is within reason but not exact
and we have rationalized that this is possibly due to the
effect of imperfections on geometries that encourage closely
bunched eigenmodes. A reason for the apparent discrepancy
between predicted and experimentally determined critical
Ma is that the experimental results have assumed the correct-
ness of the viscosity of the test fluid as stated by the manufac-
turer and we believe that the actual viscosity is substantially
less. We believe that this is the major reason that might
explain the difference in reported critical values of the exper-
iment and those predicted by the theory. Calculations in
deep layers and narrow containers show promise of future
experimental verification.

APPENDIX

The solutions of Egs. [1] - [5] were sought for the bound-
ary conditions

atz=0 U=V=W=T=0 fAl]
68U 10T 03V 1 8T IT
tz=1 —+——=—+——=—+BiT=0
ae o TAor oz Aroe oz
[A2]
for perfectly insulting walls (r = 1.0)
10T
U=V=W=-—=0 A3
A Or [A3]

and for perfectly conducting walls
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U=V=W=T=0. [Ad]
The basis functions for mode m = O are
Ji(aSr)y L(ajr)
X (r)y= L~ — L [AS]
S RCH BN ACH
Yi(r)=0 [A6]
Z3(r) = Jo(67r), [A7]

where [ and J are Bessel functions of the first kind and aj
and &? are the roots of

D(a)yh(af) + Ji(af)h(aj) =0 [A8]
Ji(67) =0 [A9]
and
La)(a}) + Ji(af)(af) =0 [A10]
Jo(67) =0 [A11]

for perfectly insulating and perfectly conducting side walls,
respectively. For m > 1 the trail functions are

Ju(a]'r)  I.(af'r)

Xpr) = @ L@ [A12]
Y(r) = Ju(B'T) [A13]
Z7(r) = J.(8]'r), [Al14]

where al, BT, and 67 are the roots of
Tnei(aM (@l + (@M ma(al) = 0 [Al5]
J.(B7) =0 [Al6]
i (87 — Jmni(8]) = 0 [A17]

and

Jnir (@M (@) + In(a] ) nei(a]) =0 [Al8]
J.(B7) =0 [Al19]
J.(67) =0 [A20]

for perfectly insulating and perfectly conducting side walls,
respectively.

As noted in the main text of this paper Eqgs. [13]-[15]
were substituted into the governing equations. The pressure
was then eliminated and equations of fourth order resuilted.
On using the Galerkin method many integrals result from
making the residuals equal to zero. An example is
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(3 + m?)

1
[integral],, = f r[D: + %Df - - D?

0 r
2 a2
+(3+m)D_(3 43m)

r
"3 r

]X,-X,dr. [A21]
When m = 0, [A5] to [A7] were used and when m = 2,
3, etc., [A12] to [Al7] were used. However, when m = 1
this and several other integrals gave rise to singularities at
r = 0. There are at least two ways to get over this problem.
One way is to look at the geometry of the problem as a
limiting case of an annular compartment with a very small
inner cylinder and thereby exclude r = 0 from the domain.
Another way is to choose the m = 2 spectral functions in
order to express the flow pattern at m = 1. This is legitimate
as the eigenfunctions are complete. We chose to do the latter
and note that Chen et al. (10) indicated that [A12]to [A14]
with m = | were used in their calculations. As this leads to
singular behavior, this may be one reason why there is a
difference between our results and Chen er al. (10).
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A 3D NUMERICAL MODEL FOR FLOW PROFILES IN A BRIDGMAN
TUBE --THE EFFECTS OF CONSTANT AND PERIODIC OFF AXIS
ORIENTATION IN A LOW GRAVITY ENVIRONMENT

A.X. Zhao', R. Narayananl and A. L. Fripp2

: Department of Chemical Engineering, University of Florida. Gainesville, FL 32611
*NASA Langley Research Center Hampton, VA 23665

ABSTRACT:

A 3D numerical calculation is performed on a model that depicts the flow profiles due to thermo-solutal
convection in a cylindrical tube. The calculations were done with the purpose of delineating the qualitative
features of the tlow profiles for the cases when the container's axis is perfectly aligned with respect to the
mean gravity vector and also when it changes periodically with respect to the gravity vector. It is found that
the flow profiles are similar to those of the Rayleigh-Bénard problem in the case of perfect alignment while a
swirling pattern appears when the tube’s axis is not aligned with the gravity vector. This indicates that it
might be preferable to have a slight tilt in the contdiner axis during crystal growth as swirling flow will
diminish axial mixing. The solutal convection is the dominant feature of the flow and is affected
considerably by the gravity level. © 1999 COSPAR. Published by Elsevier Science Ltd.

INTRODUCTION

This is a brief report describing the flow profiles that are induced in a low gravity environment in a
Bridgman tube in which the fluid occupies a constant volume. The Bridgman tube as considered in this
study is merely a circular cylinder that is subjected to radial thermal gradients and axial solutal gradients.

Typically, the Bridgman tube is used in the vertical directional solidification of compound semi conductors
such as Lead Tin Telluride. The growth of such materials is affected substantially by the convective flow
profiles that accompany the process. This convection is due to thermal and solutal gradients that are
generated because of the solidification process. Amold ez. al. (1991) did calculations to model a GaAs space
experiment and concluded that three-dimensional flows occur under certain gravitational values and
orientations. Their calculations were not concerned with solutal convection. Naumann and Baugher (1992)
have made analytical estimates of radial segregation in Bridgman growth for low-level steady and periodic
accelerations. In any actual growth process, the liquid zone is ever shrinking and this can be expected to
change the flow profiles quite a bit. Nonetheless it would be interesting to have an idea of the flow profiles
that are generated when the force conditions on the ampoule are compatible to a time dependent
microgravity level and where certain assumptions such as a constant liquid zone is assumed. We present here
a numerical model that shows the effects of off axis and a time dependent orientation on the flow profiles in
a Bridgman tube. The effect of tilting the otherwise vertical container with respect to gravity is also
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described. The calculations were done with the purpose of delineating the qualitative features of the flow
profiles for the cases when the container’s axis is perfectly aligned with respect to the mean gravity vector
and also when its axis periodically changes with respect to the gravity vector. The gravitational levels that
are assumed range from 10'°ge (or ten micro g) to 10 4gc where g is earth’s gravity. A value of ten micro g is
reasonable as it is a fair representation of the low frequency accelerations experienced on the cargo bay of the
U.S. space shuttle or on the future international space station if the Bridgman tube. A level of 100 micro g is
not very probable. however we also present calculations that include this extreme case. To the best of our
knowledge this is the only study that shows the dominant effect of solutal convection over thermal
convection at the higher gravity levels and also the only study where the ampoule axis orientation is varied
with time,

Table ! The Thermophysical Properties Used in the Calculations
7.04 g/cm’

Density
Kinematic Viscosity 0.0024 cm®/s
Thermal Diffusivity 0.03 cm/s
Solutal Diffusivity 7 10% ems
Thermal Expansion Coefficient 1.18 10™/ce
Solutal Expansion Coefficient 0.22 /Weight fraction
Segregation Coefficient 0.7

THE MODEL AND THE NUMERICAL SCHEME

The model that is used assumes that the Boussinesq €quations hold. Further the calculations were done
assuming that the fluid is Lead Tin Telluride reflecting our interest in compound semiconductors. The
thermophysical properties of Lead Tin Telluride as used in the calculation are given in Table 1. Figure 1
describes the situation when a container is subject to thermal gradients with a solidifying interface at
z=H-Hsolid. The thermal and concentration boundary conditions imposed on the container are given in Figure
1. No-slip conditions are used at all boundaries including the solid-liquid interface upon which the
coordinate system is fixed and which is assumed to move down in the z direction at a constant speed V;
equal to | cm/hr. The height of the tube of diameter equal to 1. cm.is given by H and assumed to be 5.0 cm.,
equally divided between the solid and liquid zones while the insulation zone is assumed to occupy the
middle one third. These correspond roughly to the experimental ampoule used in a Lead Tin Telluride
experiment that was conducted on USMP 3. The hottest temperature is assumed to be 1150 degrees Celsius
while the coldest temperature is fixed to be 700 degrees, the interface being at 900 degrees. The orientation
of the gravitational acceleration is expressed in terms of the angle between the gravity and the negative
direction of the z-axis. The major assumption is that the liquid length is kept constant. As a result it is
assumed that the end of the liquid was at a constant concentration , C, equal to 0.2 weight fraction. This is
tantamount to a continuous feeding of such liquid at the solidification rate Vs. Before we go on it might be
useful to point out that the thermal Rayleigh number is estimated to be about 65 for a gravity level 10"‘gc
while the solutal Rayleigh using the same length scale is about 147000
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Fig. 1 The schematic of the geometry and thermal and
concentration boundary conditions of the calculation.

RESULTS OF THE CALCULATIONS AND CONCLUSIONS

The finite volume method. SIMPLE (cf. Patankar,1980) was chosen to solve the governing equations.
Figure 2 shows the flow profiles at two different gravity levels. Figure 2a describes the pattern that is
expected at a constant g level of 10'5gc . What is to be observed is vertical stacking of an axisymmetric or
torroidal pattern. This vertical stacking may be expected as the top of the ampoule is hotter than the bottom
and the lower "cell' is in the insulation zone. The configuration acts like a fluid that is "heated from above'
and the weak flow is primarily driven by radial gradients. The weakness in the lower cell is primarily due to
the effect of the presence of the 'no slip' solid boundary.

The situation changes somewhat for the case of a g level of 104ge as seen in Figure 2b, for here the solutal
convection begins to play a part. The solutal gradients are unstable in the sense that they promote flow even
if the thermal expansion coefficient is negligible. As observed earlier the solutal Rayleigh number is about
147000 whereas the critical solutal Rayleigh number, in the absence of thermal gradients for this aspect ratio
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Fig.2. The 3D flow field in the liquid region with constant ‘g’ and fixed orientation
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(radius/ height =0.2) tuns out to be about 50000 from the calculations of Hardin et. al.. The unicellular
patterns that are observed are a result of the solutally driven convection and are expected for this geometry
according to the results of the Rayleigh-Bénard problem (cf. Hardin et.al., 1990). Notice further that the
vertical stacking arrangement disappeared for the larger ‘g’ level indicating the dominance of the solutal
convection over the thermal convection. Figure 2c shows the flow profiles resulting from a time invariant
change of the ampoule axis with respect to the mean gravity vector of 10”°g.. What is immediately apparent
is the swirling flow that helps contain the rejected solute near the solid liquid interface. The 'z’ component of
this type of flow is much smaller than the other two components except near the interface and the end of the
liquid where all components are set to zero on account of no-slip. It is a concentration induced flow because
the velocity components near the interface in Figure 2c are much larger than in Figure 2a. In a real crystal
growth configuration such an off axis tilt would help prevent axial mixing and therefore be beneficial to the
crystal. If the "g'- value is increased by an order of magnitude the flow is mostly of a unicellular style except
near the interface. This is shown in Figure 2d. Figure 3 depicts the periodic change of the cylinder axis with
the gravity vector. The frequency was set to be one cycle per hour. This was an arbitrary choice even though
aerodynamic drag causes a readjustment every 20 minutes or so in a typical space orbiter. All the same the
results can be expected to be qualitatively similar to those reported here in the case when the frequency is
increased three fold. The flow profiles at a constant "z' plane near the solid liquid interface are given at every
quarter cycle. once a periodic steady state is reached. Notice that the direction of the swirl changes every
half cycle i.e., when the gravity vector crosses the cylinder axis leading to local mixing near the solid liquid
interface.

The effect of gravity level and time periodic off axis alignment show collectively that the convection at low
gravity in a bottom or top seeded Bridgman tube is primarily in the solutal driven mode as long as the gravity
level is not very small. Moreover a slight tilt with respect to gravity causes the fluid flow to go into a
swirling mode so that solute is contained near the solute-generating boundary.
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Bilayer Rayleigh—Marangoni convection:
transitions in flow structures at the interface
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The fluid physics of buoyancy-driven (Rayleigh) and interfacial tension-driven
(Marangoni) convection is examined for two superimposed layers of luids. This con-
vection occurs on account of temperature gradients that are imposed perpendicular
to the fluid fluid interface. Interfacial deflections. small as they may be, play an
important part in identifying the mechanism that governs the flow, and calculations
have been made that indicate whether hot or cold fluid flows towards or away from a
crest or a trough. As a result, four possible flow structures or ‘modes’ at the interface
have been identified. Two heating styles. heating from below and above, are com-
pared and the behaviour of the fluid physics as a function of total fluid depths, depth
ratios and gravity levels is explained. Changes in modes result because of changes in
these parameters. We have given plausible physically based arguments that predict
the sequential change in modes as these parameters are changed and have ‘veri-
fied” our conjectures with calculations. Flow mechanisms in the case of a solidifying
lower phase have also been studied. as this has an application to liquid-encapsulated
crystal growth. Where convection is deemed detrimental to crystal homogeneity, we
conclude that the liquid-encapsulated method of crystal growth is best conducted
under Earth’s gravity.

1. Introduction

This paper is concerned with the study of convection in fluid bilayers. Interfacial-
driven convection must necessarily involve at least two fluid layers and we could well
imagine that the fluid physics of motion. driven by interfacial tension and density
gradients. depends largely on the heating direction. fluid depths as well as property
ratios. One motivation for this study stems from an interest in liquid-encapsulated
crystal growth where a vertical cylinder with thermally insulated side walls encloses
the melt. The crystal solid phase can be below the melt phase and this corresponds
to the bottom seeding situation where the liquid melt is now heated from above. An
encapsulant is often placed above the melt in order to provide a diffusion barrier to
high volatile constituents in the melt. An example is the growth of gallium arsenide,
wherein arsenic is the highly volatile component and boron oxide the encapsulant.
A bilayer with a common interface is thereby created. As a temperature gradient is
applied across the interface, there are basically two mechanisms which can generate

Proc. R. Soc. Lond. A (1995) 451, 487-502 © 1995 The Royal Society
Printed in Great Britain 187 TEX Paper
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Figure 1. Schematic of the bilayer svstem. Dashed line is the flat interface in the quiescent
state.

convection. i.e. buoyancy and interfacial tension gradients. These two mechanisins
are called Ravleigh and Marangoni effects. respectively. In a model problem we could
apply a temperature gradient that is either parallel or antiparallel to the gravitational
field and the configuration represents an instability problem which is associated with
a bifurcation from the quiescent state to the convective state. By applying a linear
stability theory, we get the sufficient conditions for the onset of convection as well
as the most dangerous wavelength of an imposed infinitesimal disturbance.

We can understand the physical mechanisms which are involved in interfacial ten-
sion gradient convection by considering a bilayer configuration. as shown in figure 1.
Let 77 > T,, and further assume that gravitational effects are negligible. Now sup-
pose we give a perturbation to an erstwhile flat interface so that the temperature at
the point ‘¢’ is higher than at “b’. As most fluid bilayers have a negative interfacial
tension gradient, the interfacial tension at ‘¢’ will be lower than at ‘b’ and fluid is
driven from ‘¢’ to ‘b’. Fluid from both phases must then rush towards "¢’ and the
final steadyv state will depend on the fluid propertv ratios and heights. If we have
a liquid gas system where the upper gas phase is assumed to be passive, then only
liquid from below will move towards "¢’ and it follows that unless the temperature
gradient is reversed. the perturbations must decay. Gravity stabilizes or not accord-
ing to the heating arrangement. It may be pointed out that the mechanism for flow
can take place even if the interface is always restricted to be flat because temperature
perturbations are still allowed. However. our interest will mainly focus on the general
case where interfacial deformations are included.

2. Earlier work on bilayer convection

The first theoretical work in Marangoni convection was by Pearson (1958). wherein
the liquid layver was assumed to be superimposed by a quiescent gas. One of the
early studies in bilayers was by Sternling & Scriven (1959), who considered the pure
Marangoni problemn using mass transfer as an analogue to heat transfer. and Smith
(1966). who examined the case of thermocapillary and gravity waves. Sternling &
Scriven found that convection or instability can occur if the transfer takes place in
either direction. This problem was later extended to include surface deflection and
surface viscosity, but it was then assumed that the upper phase was passive.

This work was followed by Zeren & Reynolds (1972). who determined the critical
temperature gradient for the onset of convection in a bilayer of water and benzene in
order to compare theory with experiment. Now. in dimensionless form. the critical
temperature gradient is represented by either the MNMarangoni or the Rayleigh number.
As these groups are related to each other by a factor that contains physical properties.
it is sufficient to calculate either the critical Rayleigh or critical Marangoni number

Proc. R. Soc. Lond. A (1995)
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for the onset of convection. When the bilayer was ‘heated from below’. Zeren &
Reynolds (1972) found that the onset of convection was either a buoyancy-driven
flow generated from the upper phase or an interfacial tension gradient-driven flow
that started at the interface. When thev considered the case of a low liquid layer
depth of the lower layer compared with the thickness of the upper layer, they found
that the Marangoni convection in the bilayer served to delay the onset of motion and
that the flow was primarily a buoyancy mechanism which was driven from the upper
layer. This resulted in vertical stacking in the upper laver where the upper cell in
the upper layer was associated with the buovancy mechanism. On the other hand.
when high depth ratios of the lower phase were considered. the onset of flow was
due primarily to a Marangoni mechanism and not influenced much by the Rayleigh
effect.

Following the work of Zeren & Reynolds (1972). Ferm & Wollkind (1982) per-
formed detailed calculations for the silicone oil-air system with the hope of compar-
ing their results with the experiments of Koschmieder (1967) and Palmer & Berg
(1971). All calculations were performed for the case of the bilayer being “heated
from below’. In an effort to trace where the Marangoni regime was distinct from the
Rayleigh regime. a series of calculations were performed and plotted as the critical
temperature gradient against the depth of lower layer. They claimed that a drastic
change in slope of this curve indicated the depth ratio of the lower laver when one
mechanism took over the other.

Recent work on bilayer convection includes the interesting studies of Rasenat et
al. (1989) and Wahal & Bose (1988). Rasenat et al. (1989) investigated the case of
negligible surface deflections and uncovered oscillatory behaviour. They also con-
sidered a case of finite interfacial deflections but with negligible interfacial tension.
While it may be argued that interfacial deflections are verv small in comparison to
the fluid depths. it is our view that the interfacial morphology helps to identifv the
controlling factors of competing convective mechanisms. This is what we aim to show
in the subsequent sections.

It is noted that Zeren & Rewvnolds (1972) calculated the energy contributions
from the buoyancy and surface mechanisms. as well as the critical Rayleigh and
corresponding Marangoni numbers, in an effort to trace the leading characteristics
of the How. It is obvious that the energetics of the flow are calculated across the
entire domain of the flow field and give some useful giobal information. However.
it is also possible to consider the local behaviour of the flow at the interface using
linear stability methods and by evaluating the eigenfunctions. We feel that this leads
to vital information on the flow mechanism at the interface. In particular, we can.
as we shall see. decide whether we have hot or cold fluid rushing towards or from a
crest or a trough. We will observe that we can have four possible flow modes at the
interface. This paper concerns operating parameters and. as we change the gravity
level. the total depth or depth ratio. a sequential change of flow structures is obtained.
The generality of this sequence depends on whether we have a liquid-gas system. a
liquid liquid system and whether the bilayer 1y heated from below or above’. The
order of flow structures as we change these parameters also depends on whether the
temperature coefficients of interfacial tension and density are negative or positive.
From this we can decide whether the How mode at the interface is promoted by
Ravleigh or Marangoni effects.

Proc. R. Soc. Lond. A (1995)
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3. Theoretical development

The model that we analyse is schematically shown in figure 1. The governing
equations are derived in a manner identical to that of Ferm & Wollkind (1982) and
so we dispense with the intermediate details in the cause of brevity. Without loss
of generality. we introduce a two-dimensional coordinate system. In this system. the
direction of the gravitational acceleration corresponds to the negative z-direction.
The position of the deflecting interface is a function of r and the time t and is
measured from the datum = = 0. The upper fluid is designated with + and the
lower fluid with —. so that d* represents the vertical depth of the upper fluid and
d~ the depth of the lower fluid. The lower solid-liquid boundarv has a constant
temperature T,, and the upper solid surface has a temperature of Tj. respectively.
The static interface has a temperature of 7. We will use the Boussinesq form of the
continuity. Navier-Stokes and energy equations.

In order to get non-dimensionalized forms of the above equations. we introduce the
scale factors for distance, velocity, time and pressure. These are d~. x/d~, (d™)?/x
and uk/(d™ )%, respectively. k and j are the thermal diffusivity and dynamic viscosity
of the lower phase, respectively.

The dimensionless temperature © is defined as

(T -T;)

9: (Tm—Ti).

(3.1)

In what follows, several important dimensionless groups will arise. These are the
Rayleigh number R. Marangoni number 1/, Cripsation number C. the Bond number
G and Prandtl number P. They are defined as follows:
_ gagd? 7, 3d? HK

M= o= o Bpd L, v

KV KL ood T K

R

All the physical properties in these numbers are referred to the lower phase. Here
@ is the negative thermal expansion coefficient. 3 is the temperature gradient in the
static state. v is the kinematic viscositv. Ap (i.e. p~ — p7) is assumed to be positive.
thereby excluding the Rayleigh Taylor instability. ¢ is the gravitational constant. o,
and o, are the interfacial tension and its temperature coefficient. respectively.

The governing equations are nonlinear and admit the conductive quiescent state as
a trivial solution. We linearize the equations about the trivial base state. eliminating
all of the dependent variables in favour of the vertical component of velocity and
temperature. Linearization of a dependent variable A gives

A=A ~cA +0(). (3.2)

where A, is the quiescent state and ¢ is a deviation from this state. A’ is further
decomposed as

A = Ay(z)ed e, (3.3)
This means that a Fourier transform in the r-direction and a Laplace transform in
time has been used. The dependent variables are the transformed temperature .

the transformed vertical component of velocity Wy and the transformed interfacial
deflection 1)y. We get the momentum and energy equations for the upper phase as

%(Dz ~ WY = ;(DZ — ) - aRW2 6] (3.4)
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-+

L i
n(D? - )67 =q6f - — - (3.5)

Here. D represents the total derivative with respect to z. . 5. a. 1t and m are the
density, kinematic viscosity. thermal expansion coefficient. thermal diffusivity and
thermal conductivity ratios. respectively. These ratios are all referred to the lower
phase properties as characteristic variables. The corresponding forms for the lower
fluid are the same as the above equations with the ‘1" superscript replaced by the *—’
superscript, and also with . s. a, n and m replaced by unity. It is clear. by eliminating
either dependent variable in favour of the other, that each phase is governed by a
sixth-order ODE in either the temperature or vertical component of velocity. The
boundary conditions are also transformed. For the sake of brevity we only give the
interfacial conditions here. The kinematic. no slip and momentum equations at the
interface are

Wi = qno =Wy . (3.6)
[DW,]E =0, (3.7)
[[qK[ DWW — Kls](D? — w?)DWo + 2K [s|w’ DW, T 2 (RC + G + P <t
P ) o — K[s{(D* —w")DWo + [s]w 0 ‘——( S+ +bu)—C—nO,
(3.8)
[~ K[s|(D? + w?)Wol % = Mw’(m0 — 6y)- (3.9)
The continuity of temperature and heat flux at the interface are
[0 — K[1/mne]Z =0. (3.10)
[K[m|D6]T =0. (3.11)

K[m] represents an operator that takes the value of m in the upper phase and
unity in the lower phase.

The above system represents an eigenvalue problem and has 10 dimensionless
groups as parameters. It is sensible to concentrate on a particular system. fix the
values of all the parameters and determine the critical condition of onset. As the
Rayleigh number is related to the Marangoni number by a factor made up of physical
properties, we can get the critical temperature gradient and critical wavelength of
the disturbance for the chosen system.

The sign of the quantity DW,(0)/m0. called a flow indicator (cf. Smith 1966),
tells us whether we have upflow or downflow at a crest. If it is positive. we have a
downflow at a crest. The quantity (€ — ©.)1/n, which is of O(<?) and equal to 60/,
is a temperature perturbation indicator and tells us that we have a hot spot at the
crest if it is positive. Here (O — 6.)1 is the dimensionless temperature perturbation
at the interface. It is clear that there are four possible ‘flow modes’ or ‘scenarios’
and these words will be used interchangeably. These are depicted in figure 2 and
assigned Roman numerals. The discussion of the numerical results will centre on
these flow scenarios and the sequence of flow mode changes as we change the gravity
level. the total depth d; and the depth ratio ¢(=d*"/d"). The eigenfunctions Wy (2)
and W, (z) are also calculated and we can observe if there are any zeros in the z-
direction. This will indicate if there is a vertical stacking of flow cells in either phase.
The discussion of the physics assumes that ¢ = 0 or the exchange of stability. By
applying a spectral-7 method. it was shown that Im(q) = 0 when Re(q) = 0 in the
cases studied.

The reliability of the numerical procedure was tested by recovering the results of
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492 A. X. Zhao and others

!
\
i

. “ hot

cold

\
/
-
!
i
<

-— o o o—

Figure 2. Four flow modes at the fluid-fluid interface. When the interface is flat. there is no
difference between mode [ and I1, or mode III and IV.

Table 1. Physical properties of fuids

water
Dow Corning oil air e N,
—— above under under benzene gallium
parameter under above water or benzene air above  under
(units) air galllum D.C.oil (16°C) (07°C) water D.C. oil
density
(g cm?) 0.968 0.968 0.0012  0.9938 0.999 0.884 6.09
negative thermal
expansion coefficient )
(x1071°C) 9.6 9.6 34.0 2.06 —0.68 14.5 1.0
thermal conductivity
(10 ergem P57 °C7 ) 155 1.55 0.26 5.97 5.97 1.64 334.0
thermal diffusivity
(x107 % em?s™ 1) 1.1 1.1 160 1.43 1.43 1.04 146.0
kinematic viscosity
(stoke) 1.0 0.05 0.152 0.01 0.01 0.0067 0.003 54
interfacial tension
{dyne cm™") 20.9 — — 32.8 74.9 — 718.0
negative interfacial
tension gradient
(x107% dyne cm—1 °C) 5.8 — — 5.66 14.0 -- 38.89

Zeren & Reynolds (1972) and Ferm & Wollkind (1982). Table 1 contains the fluid
properties used in our calculations. The results for the silicone oil-air system agree
with those of Ferm & Wollkind (1982) (within the round-off error). The comparison
for the water-benzene bilaver shows good agreement with the values of Zeren &
Reynolds (1972). We note that Renardy & Joseph (1985) and Wahal & Bose (1988)
have independently verified these latter results.
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4. Discussion of the numerical results

As we have used a linearized model. the calculations can only give information
about the flow state at the onset of convection. The discussion is divided into several
parts. each referring to the physical situation on hand. These are: (a) a liquid-gas
case, as exemplified by the silicone oil-air system: (b) a liquid-liquid case. as depicted
by the water-benzene system: (¢) a case of two liquids in the presence of solidification.
which is depicted by the gallium-silicone oil system with a solidifving gallium phase
below: and (d) the situation that arises when the temperature coefficient of density
is positive. as exemplified in the water-air system with the temperature range of
water between 0 and 4°C. As noted by Chandra & Holland (1983), there are some
commercially important liquid semiconductors. such as mercury cadmium telluride.
with positive temperature coeflicients of density. It is clear from the choice of systems.
where the upper layer is less dense than the lower layer. that the Rayleigh Taylor
instability will be excluded from this study. Moreover. as neither phase is in motion
in the base state. the Kelvin-Helmholtz instability is also excluded.

For a chosen system, the only control parameters in experiments are the total
depths, depth ratio and gravity level. The critical temperature difference and critical
wavelength at the onset are results that come from the linearized stability calculation.
Before we discuss the results any further. we will clarify the roles of gravity. total
depth and the parameter ¢. The lowering of gravity has the role of increasing the
relative importance of Marangoni to Rayleigh effects and also reduces the Bond
number or the effect of gravity waves. In this paper. different gravity levels will be
chosen and a lowering of gravity will therefore reduce both gravity waves as well
as the Rayleigh effect. Unlike Smith (1966). we will not study the case where only
capillary and gravity waves are considered and where buoyancy is ignored. If the
total depth is reduced for a given system. we have the effect once again of increasing
the Marangoni effect relative to the Ravleigh effect in both phases. However. for a
fixed total depth. decreasing ¢ has the role of increasing the Rayleigh effect in the
lower phase at the expense of the Rayleigh effect in the upper phase. Besides. it also
has the effect of increasing viscous resistance in the upper phase and this will play a
role in the flow structure that the fluid bilayer svstem settles into. In what follows.
we shall refer to figure 2, which shows four possible flow ‘modes” or ‘scenarios” at the
interface at the onset of convection.

The actual ‘mode’ that a system settles into depends upon the thermophysical
properties. gravity. total depth and depth ratio. but we will be less concerned about
the mode that is realized and more concerned with the sequence of transitions from
one mode to another as control parameters change and. therefore. will make general
statements regarding this transition sequence for a variety of configurations. These
statements will then be ‘verified” by appealing to specific calculations on particular
fluid-fluid systems and do not entail a mathematical proof.

It is instructive to note the relation between these modes. When the onset state of
motion of the fluid bilayer goes from mode I to mode I1. it simply means that a crest
must gradually transform into a trough and the flow directions do not change at any
particular lateral position along the interface. In going from mode II to mode III. two
things happen: first. the crests and the troughs become progressively smaller and,
second, the interface approaches the base state temperature. This change continues
until the positions which were formerly crests now become troughs and vice versa.
Meanwhile, the temperature perturbations also reverse in sign (cf. figure 2). Mode IV
is seen only in one of the cases that we discuss. and changes to mode I under some
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conditions. The transition between I and IV is similar to that between II and III. It
is clear that the mode transitions must be smooth in the sense that the only way
in which any two modes can coexist is in the asymptotic case where the interface is
flat. Otherwise sudden mode transitions would imply the existence of codimension 2
points. It is easily seen that such codimension 2 points are precluded as the critical
Marangoni number is simple. unique and obtained as the ratio of two determinants
resulting from the imposition of the boundary conditions. while the corresponding
eigenfunction is unique and this issue is made clear by Nadarajah & Narayanan
(1987). In other words, we cannot ever get two or more coexisting flow modes at the
critical Marangoni number for the laterally unbounded case.

There are some specific characteristics of the Marangoni and Rayleigh effects which
are worth stating. First. it the Marangoni effect is operative alone then hot fluid at
the interface must move towards the cold spot and the flow mode may be either I
or II. Now, whether the hot region at the interface is a trough, as in mode I, or a
crest, as in mode II, depends on the magnitude of the forces and the mechanical
and viscous resistances in both phases. This is so as the interface at the hot spot
will then bump towards the region that exerts the greater resistance to flow in that
region. Second, if the Rayleigh effect is operative alone then matters become a little
complicated. In the case of a liquid-liquid bilayer. the upper fluid offers resistance
on account of its viscosity and density and vet it conducts heat. We can expect to
see any of the modes depending on the forces at play and the magnitude of the
resistance. As we continue to consider the pure Ravleigh effect, but now restrict the
study to the ‘heated from above’ problem. it initially appears that no steady flow
will occur unless we have the odd case of a positive thermal expansion coefficient.
However, this premise can be shown to be false. We refer the reader to Gershuni
& Zhukovitskii (1980). These authors discuss a case where the upper fluid is less
conductive than the lower fluid and has also a much smaller thermal expansivity.
In that peculiar case. we can see that a mechanical perturbation to the upper fluid
sends a hot fluid element towards the interface. where it easily transmits heat to
the more conductive lower region. This in turn excites buoyancy-driven motion in
the lower phase and, as a result, momentum from the lower phase is transmitted to
the viscous upper layer and the process continues. Because Gershuni & Zhukovitskii
(1980) studied the case of water and mercury. we verified their results as a test of our
numerical method, but otherwise did not consider this particular system further. In
the unusual case where the lower fluid has a positive thermal expansion coefficient.
we obtain mode IV for a liquid-gas system because it is easier to push light cold
fluid upwards and towards the interface. We will now discuss these problems in the
following sections and provide numerical evidence for various system calculations. In
what follows. both buoyancy and interfacial tension gradients. in general. come into
play unless noted otherwise.

(a) Liquid-gas system

It is clear in the liquid—gas case that only modes I and II are possible candidates.
as the upper fluid is virtually passive. offers little fluid mechanical resistance and
hot fluid from below must flow upwards for the reason that this is the situation
favoured by both buoyancy and interfacial tension gradient forces. Calculations that
treat the upper gas as passive were compared with those that treat it as active and
we obtained results that were within 1% of each other insofar as the values of the
critical temperature difference were concerned.
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Figure 3. Mode switching for the liquid-gas {silicone oil-air) system ‘heated from below™: (a)
the effect of gravity level and total depth (£ = 1): (b) the effect of depth ratio {dv = 10 mm).

1f this system Wwere ‘heated from above at the upper plate, then it would be
very stable as calculations tell us that the critical negative temperature gradient is
extremely large. This is contradictory to the experimental results of Block (1956)
and we believe that the flow he had must have resulted from non-uniform heating or
meniscus effects. For the case of ‘heated from below. if the Marangoni mechanism
alone is operative with negligible gravitational effects. then the fow will align itself
into mode I as the resistance to flow is greater in the lower phase leading to a trough at
the hot spot. If buoyancy alone were operative then either node is possible depending
on the mechanical and viscous resistance to flow offered by the lower phase. For
example, if £ were large then mode I would be preferred, compared to mode I1. since
the hot spot would once again become & trough according to the criterion established
earlier. On the other hand. if ¢ were small and the resistance decreased relative to
the buoyancy then the system would align itself to mode 11. giving rise to & situation
where hot plumes rise towards a crest in order to balance the cold heavy fluid flowing
down from a trough.

The modal (ransitions (in the combined Rayleigh Marangoni case) must therefore
proceed from I1 to 1 in figure 2 as We reduce gravity and. depending on the system.
the reduction in gravity level may have to be significant. Figure 3a shows the flow
modes as a function of gravity and depth levels for the silicone oil-air system and we
observe that our arguments are validated by the numerical calculations. A calculation
of the critical temperature gradients show a monotonic behaviour in the vicinity of
the flow switch. In this regard, we agree with the conclusions obtained by Sarma
(1987). who considered the upper phase to be truly passive.

From our earlier comments, we can see that a reduction in the total depth causes
a relative increase of Marangoni to Rayleigh effects. We therefore see & transition
from mode 11 to mode 1 as the total depth is decreased. For a fixed total depth and
gravity level. an increase in ¢ should cause 2 decrease in the lower phase Rayleigh
offect in comparison to the Rayleigh effect in the upper phase. But the upper phase
is a gas and 1s Jargely passive and therefore an increase in { can only cause 2 decrease
in the overall Rayleigh effect, and by default it will encourage the Marangoni effect,
thereby going from modes 11 to 1. as seen in figure 3b.

A comment on Ferm & Wollkind's (1982) paper is in order. They performed a
calculation in the silicone oil-air system to find the depth for the transition from
Marangoni to Rayleigh dominant regimes. Using a value of £ = 0.109 they obtained
a value of d7 = 6.5 mm. whereas we obtain a value of 2.5 mm. It is to be noted
that our notion of mechanism change 1s given by the flow scenarios as manifested
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Figure 4. Mode switching for the liquid-liquid (water benzene) syvstem "heated from below":
(1) the effect of gravity level and total depth (£ = 1); (b) the effect of depth ratio (1g).

in figure 2, and in the liquid-gas svstem we can only obtain the first two modes.
Ferm & Wollkind (1982) indicated that the mechanism changed from Marangoni-
to Ravleigh-dominant when there was a change in the slope of the graph between
critical temperature gradient and lower phase depth. We feel that our classification is
more definitive as it identifies various scenarios at the interface between both fluids.

(b) Liquid-liquid systems

Liquid -liquid systems are interesting as thev may be examined with two different
heating directions and we choose the water-benzene system to explain the physics
because it provides a good test case to verify the detailed results of Zeren & Reynolds
(1982).

The modal sequence as we increase gravity. and also “heat from below’. goes from
mode I to mode II and then to mode III. The reason why we can expect to see
mode III as gravity is increased from mode II is because the Marangoni effect becomes
less important and less work is required to push up the short cold columns seen in
III as opposed to the tall cold columns seen in IV. In fact. mode IV occurs for the
peculiar situation where the thermal expansion coefficient is positive. and this we will
discuss later. The particular system that we have investigated has a large value of a,
the thermal expansion coefficient ratiof, and therefore it is generally biased towards
greater buoyancy in the upper phase in comparison to the lower phase. unless of
course ¢ becomes so small so as to discourage buovancy in the upper phase in favour
of the lower phase. It is for this reason that. as gravity is increased from mode II.
the fluid goes into mode III for all of the ¢ values that we have used. Further. it is
at the point of mode switching that the Marangoni effect ceases to be of importance
and this is seen by the fact that the fluid at the interface does not move from hot
regions to cold regions. However. once the fluid is in mode III. the Marangoni effect
delays the instability by raising the critical temperature difference. When the mode
changes from mode II, upon decreasing gravity. then mode 1. which is favoured by
the Marangoni effect. is realized. It should be noted that the mode can remain in
mode II and never change into mode I on the reduction of the gravity level. This
peculiarity once again has to do with the value of £ and upon the viscosity ratio

t All of our calculations and statements in the case of liquid-liquid systems are restricted to the
situation where the ratio of the upper phase thermal expansion coefficient to the lower one is much
greater then unity. The reverse case is not discussed in the cause of brevity but the physically based
arguments follow in a similar manner.

Proc. R. Soc. Lond. A (1995)



Bilayer Rayleigh Marangoni convection 197

5. If the upper fluid is very viscous and / is small tlien more resistance to How is
exerted by the upper phase. preventing the interfacial tension from flattening out a
crest and thereby disallowing a mode II structure to develop into a mode I tvpe. It
turns out that this ohservation was mathematically proven by Smith (1966) for the
problem that considered only gravity and capillary waves without buovancy effects.
We have also checked and verified Smith's assertion by considering a water-benzene
bilaver with a value of £ = 0.5 for verv low gravity levels and obtained a mode 11
flow structure.

The roles of total depth and ¢ are somewhat complicated for the liquid-liquid
problem that is “heated from below’. As the effect of reducing the total depth is
to favour the Marangoni over the Rayleigh effect. this simply means that the mode
switching for this heating direction goes from mode III to mode II and then to mode I
as total depth is reduced. Figure 4a bears this out. Of course. for very low £, mode II
is obtained on account of the viscous-mechanical resistance to flow in the upper phase
and figure 4b bears this out.

Now. if total depth and gravity are kept constant and ¢ alone is increased. physical
reasoning demands that the buovancy effect in the upper laver increases relative to
the lower layer. Let us suppose that the fluid properties and conditions are such that
the fluid settles into mode II. If the total depth is smallt and we continue to increase
{. we expect the flow to switch from mode IT to mode I. because the interface gets
closer to the hot lower surface in what is already a thin layer and the Marangoni
effect plavs a dominant role when the interface gets close to the lower hot surface.
thereby giving rise to a hot trough. Meanwhile. in this thin laver. the large value of {
causes the Rayvleigh effect in the upper laver to become more significant than in the
lower layer. Buoyvancy in the upper laver tends to cause hot plumes to rise in that
layer, in opposition to the Marangoni-influenced flow at the interface. As a result. we
see a vertical stacking of flow cells in the upper phase as ¢ is increased. The upper
cell in the upper phase is a result of the buovancy in that phase and the lower cell
in the upper phase is a result of the Marangoni motion that results on account of
the proximity of the interface to the lower heated surface. The cell stacking persists
even as the mode switches from II to I. The effect of f for a small total depth is seen
in the left region of figure 4b. while figure 5 depicts the velocity and temperature
eigenfunctions when vertical stacking takes place.

Contrast the situation discussed above with the case where the total depth is large:
we then expect the fluid to switch from mode II to mode IIl as ¢ is increased and
the explanation for this is as follows. The large total depth increases huovancy in
both phases; the upper phase being even miore huoyant than the lower on account
of two reasons. First. the increasing value of ¢ continues to enhance the buoyancy
in the upper phase in relation to the lower and second. but less important. the
value of a is much greater than unity (in the svstems that we chose to compute).
As the upper layer is now very buoyant. it would require less work for the fluid
to go into mode III, where a shorter column of fluid is pushed up against gravity
in both phases. in contrast to the situation of mode II. Remember that a shorter
column of liquid is pushed up against gravity in mode I as well. but the system
would prefer mode IIT as the upper phase portravs more buoyvancy in this mode as

t The notion of large total depth or small total depth is entirely syvstem dependent and only calcula-
tions or experiments can determine how large the total depth should be for us to see what we predict.
However. we can still make statements of a qualitative manner and verify them by calculations.
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Figure 6. Mode switching for the liquid-liquid (water—benzene) system ‘heated from above':
(a) the effect of gravity level and total depth (de = 2 mm): (b) the effect of depth ratio (1g).

compared to mode I. The numerical calculations confirm the physical arguments, as
seen in the right-hand region of figure 4b. In these cases. where a large total depth is
considered. an increasing value of ¢ does cause the interface to get closer to the hot
lower rigid surface, however it is not close enough to encourage an overriding effect of
Marangoni-influenced motion. and that is why the system settles into mode III with
cold troughs. At the intermediate values of total depth. mode II remains as expected
for all values of £.

When the water-benzene bilayer is ‘heated from above’, we predict a sequence
from mode I to mode II as we increase gravity; the explanation for this mode switch
is as follows. "Heating from above’ causes convection that is started by a Marangoni
influence and therefore the flow must necessarily be in either mode I or mode II.
Meanwhile, gravity serves the purpose of stabilization and therefore delays the in-
stability. Now the value of a, the thermal expansion coefficient ratio, is much greater
than unity in the system studied and an increase in gravity causes an increase in the
resistance to flow in the upper phase because of the stabilization effect. This in turn
causes the switch into mode II, creating hot crests at the interface.

Likewise, for the ‘heated from above’ case, the mode switching goes from mode II
to mode I as we decrease total depth for the reason that a decrease in total depth
is tantamount to a decrease in the stabilizing Rayleigh effect in each phase. thereby
enhancing the Marangoni effect. If we again consider gravity and total depth to
remain constant but vary ¢ for the ‘heated from above’ case, we will go from mode 11
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to mode I as ¢ is increased. This mode switch will take place when the total depth is
small, because an increase in £ has the effect of increasing the viscous resistance in the
lower phase. even though it makes the upper phase more stabilizing than the bottom
phase. When the total depth is large, the effect is mainly to make the upper phase
stabilizing, thereby increasing the resistance there and so mode II remains intact for
all £. Note, as a result of our reasoning, the ‘heated from above’ configuration cannot
cause vertical stacking. Vertical stacking can occur only when both Marangoni and
Rayleigh effects destabilize in a particular phase and yvet when both act in opposition
to each other in a ‘flow direction’ sense. This does not occur in the ‘heated from
above’ configuration with a negative thermal expansion coefficient. Our thinking
in the above is underscored by the numerical calculations that are presented in
figures 6a. b.

A comment on Smith’s (1966) paper is in order. His study was concerned with
Marangoni convection in the presence of gravity waves but without a buoyancy mech-
anism. No mention was made of hot or cold spots and only modes where fluid from
the lower phase moved upwards or downwards from a crest were considered. Yet a
pair of sufficient conditions were obtained to indicate whether flow moved upwards
or downwards into a crest. This was obtained by use of a flow indicator as in this
study. All of our observations validated Smith's (1966) derived result.

{¢) Solidifying phase below a liguid-liquid bilayer
The third case is a modification of the ‘liquid-liquid’ problem that is ‘heated from

above’. It involves a solidifying phase below the lower layer of liquid. The condition
at the boundary of the lower liquid and the adjacent solidifying phase is replaced by

D6y = wl,; coth{wA). (4.1)

It is implicitly assumed that the rate of solidification is slow enough to be negligible
and so that there is no net flow in the base state. The perturbed deflection of the
solid-liquid interface is given by

Co =6y (4.2)

In the above, A is the dimensionless thickness of the lower solidifying phase, scaled
with respect to the lower liquid thickness. We note that our calculations exclude the
important situation where constitutional supercooling, as considered by Mullins &
Sekerka (1964), is involved. The main result from our calculation is that the solid
thickness of the lower phase does not affect the flow structure at 1g but does affect
the flow at low gravity levels. In other words, the coupling is only one way at high
gravity. We surmise that even though the solid thickness destabilizes the flow, it is
insignificant compared to the overwhelming stabilization of gravity. This result is
depicted in figure 7. It is apparent from this figure that solidification at lower levels
of gravity may not prove beneficial at all under this heating arrangement as the
critical temperature gradient is lowered in the low gravity state and convection is
thereby enhanced. As a result, it appears that liquid-encapsulated crystal growth
is better conducted under Earth’s gravity conditions as the configuration would be
more stable.

We can also determine whether the solid-liquid interface deflection is in phase or
out of phase with the upper interface by examining the ratio (o)/n0y. What is even
more interesting is that when mode switching takes place as we increase gravity, we
find that the deflection at the solid-liquid interface lower phase does not change sign.
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Figure 8. Mode switching for the liquid-gas (water-air) svstem "heated from above’. The liquid
in this system has a positive thermal expansion coefficient (water is between 0 and 4°C): (a)
the effect of gravity level and total depth (£ = 1); (b) the effect of depth ratio (1g).

2
(=

total depth 4,/ mm
o O
T

0.1 1 10 100

gravity level (%g)

Figure 9. The effect of gravity level and total depth on mode switching for the liquid-gas
(water—air) system ‘heated from below' (£ = 1). The liquid in this system has a positive thermal
expansion coefficient (water is between 0 and 4 °C).

(d) The case of a system with a positive thermal expansion coefficient

Finally, we consider the case of a system where the thermal expansion coefficient
of the lower phase is positive. This is exemplified by the results using the water -air

system, as shown in figures 3a

.b. Here the heating can take place from above or

below. If the heating is from above. the origin of the convection can only be due
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Table 2. Summary of mode switching

negative thermal expansion

coefficient in liquid

~

liquid-gas system liquid-liquid system liquid-liquid system
‘heated from below’ *heated from below’ ‘heated from above’
increasing
gravity level I-1I I -1 — 11 I —-1I
increasing
total depth I > 1I I —-1I—III I—1I
increasing small total depth large total depth
depth ratio £ I1—1 -1 I — III II-1

positive thermal expansion

coefficient in liquid

liquid—gas syvstem liquid—gas system
‘heated from above’ ‘heated from below’

increasing

gravity level I'— 1V I
increasing

total depth I—-1V I
increasing

depth ratio £ IV =1 I

to buoyancy as the upper layer is virtually passive. The flow, as expected, stays in
mode IV for large gravity levels. While the convection is necessarily of buovancy
in origin, it is also true that the Marangoni effect plays a part in countering the
flow. thereby delaying the instability. Since the strength of this interfacial mode of
convection is dependent on the magnitude of the interfacial tension gradient. we
can observe that at low gravity the Marangoni effect is dominant and, as gravity
or total depths are reduced. the mode switches to I. Here Marangoni convection
causes fluid to move from hot to cold regions at the interface and a shorter column
of hot heavier water is balanced by a taller column of cold lighter water. As gravity
decreases. the system becomes more stable (despite the change in the flow mode
from IV to I) as evidenced by an increase in the critical temperature gradient, just
as we would expect. If the water—air system were "heated from below’ so as to allow
the temperature range across the water to be between 4 and 0°C. then it is likewise
argued that we would get mode I at all gravity levels. as shown in figure 9. Here the
buoyancy stabilizes and the onset flow comes from the interfacial tension gradient.
Much like the ‘heated from below’ configuration in the liquid-gas case for negative
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thermal expansion coefficient and pure Marangoni flow. mode I will be the structure
chosen by the svstem.

Table 2 gives a summary of the mode switching explained in the study. Once again.
our results depend upon the thermophysical properties of the individual systems
chosen in this study. However. the phyvsically based arguments can be similarly made
for other svstems. We believe that it is valuable to make such arguments in order to
identify the mechanisms that dominate the flow structure at an interface.

This work started from discussion during a visit sponsored by the A. v. Humboldt Foundation. C.
Wagner was supported by NASA (Langlev) grant NAG 1-1474. The work was completed under
an NSF grant CTS 9307819. Computations were performed at the Pittsburgh Supercomputing
Center.
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A brief review of multilayer convective phenomena that is associated with materials
processing is presented. Several instability phenomena that can occur in a bilayer of
two fluids heated from either above or below and the effect of laterally and vertically
confined geometries are explained. In particular it is shown that such confinement
can lead to the occurrence of codimension-two points and pure thermal coupling that
is initiated by convection in an upper gas phase during liquid-gas bilayer convection.
Experimental evidence that shows the effect of geometrical restrictions is given.

Keywords: Rayleigh; Marangoni; interfacial tension driven convection;
buoyancy driven convection; muitiple fluid level convection

1. Introduction and physics

Much of the work reported in this paper has been motivated by the need to under-
stand a technique for growing certain crystalline materials, known as the liquid-
encapsulated vertical Bridgman (LEVB) crystal growth method. Liquid-encapsulated
crystal growth is a process for producing III-V semiconductor crystals from bulk lig-
uid melts. The demand for crystals of increasingly higher purity and lower defects
requires us to understand this process in much greater detail. Some examples of crys-
tals grown using this technique are gallium arsenide (GaAs) and indium phosphide
(InP). Taking GaAs as an example. when GaAs is melted, it has a tendency to decom-
pose, releasing arsenic gas and destroying the desired stoichiometric ratio. To prevent
this decomposition, a liquid encapsulant of boric oxide (B,03) is placed on top of
the gallium arsenide. In addition, an inert gas may be placed on top of the B,O;.
These three layers are placed in a crucible, which is lowered through a temperature
gradient created by a furnace. The lower end of the crucible is cooled. thereby solidi-
fying the gallium arsenide. This configuration is shown schematically in figure 1. The
heating configuration generates vertical as well as radial temperature gradients and,
consequently, interfacial-tension-gradient-driven convection, also known as Marango-
ni convection, and buoyancy-driven convection. also called Rayleigh convection, can
occur at the liquid-gas and liquid-liquid interfaces as well as in the bulk fluid regions.

While the LEVB technique is the motivation for this study, only by considering
simple systems can we have a clearer understanding of the physics of the convective
process. Radial gradients of temperature, creeping of the encapsulant along the ver-
tical sidewalls and solutal gradients all have a complicated effect on the convection.
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Figure 1. Schematic of a liquid encapsulated crystal grower: a system of three convecting fluid
lavers. Convection in the GaAs liquid influences the quality of the GaAs solid.

Indeed the onset of convection in an actual LEVB system occurs simultancously
with the application of any temperature gradient. However. a clear understanding
of convection in LEVB and many other materials processing methods requires us
to consider problems where classical fluid mechanical procedures may be employed,
thereby simplifying the mathematics while simultaneously revealing the essential
physical features.

One such problem is the Ravleigh-MNarangoni problem. Here a gas or another liquid
superimposes a liquid layer and a vertical temperature gradient is applied. Suppose
that the density and interfacial tension of the liquid decreases with increasing tem-
perature. As the liquid is heated from below. it is top heavy. A small disturbance
can upset this arrangement if the overall temperature difference is large enough and
flow can ensue in the form of buoyancy or Rayleigh convection. However, flow can
occur even in the absence of gravity. For example, in the quiescent state the liquid—
gas interface is flat and a small disturbance to it causes a transverse temperature
gradient at the interface causing fluid to flow from warm regions of low interfacial
tension to cold regions of high interfacial tension. Hot fluid from below rises to the
interface and cold fluid from the interface moves down to maintain continuity of fluid
flow and the convection continues as Marangoni convection. For small values of the
vertical temperature gradient, the fluids remain quiescent and transport heat by pure
conduction. However, when the temperature gradient reaches a critical value, even
the smallest disturbances imposed on the system amplify with time and the system
reaches a steady or time-periodic steady state. In other words a critical temperature
gradient is required for convection to occur. More details on the nature of this type
of convection are available in the reviews of Koschmieder (1993) and Davis (1987).
We will explain the physics of single and multilayer convection in laterally bounded
geometries where the layvers are heated from above making them gravitationally sta-
ble and where the layers are heated from below making them gravitationally unstable.
The explanation of physics in multilayers will be followed by a report on two sets of
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Critical Marangoni Number

0.0 1.0 20 3.0 40 5.0
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Figure 2. Plot of the critical Marangoni number versus the aspect ratio of a cylinder. The mode.
m. with the smallest Marangoni number at a given aspect ratio is the mode or flow pattern at
the onset of convection.

experiments. Noticeably absent from this paper will be the effects of solutal convec-
tion, some aspects of which have been covered by several other authors (McFadden
et al. 1984; Turner 1985). It should be noted that this paper is a brief report of the
work done by us and a few other researchers. Greater detail is available in the thesis
by Johnson (1997) as well as papers by Johnson & Narayanan (1996, 1997, 1998).
Fuller explanations of the effects of convection on crystal growth are given by Hurle
(1994), Miiller (1988) and Schwabe (1981).

The extent of convection is often characterized by a dimensionless temperature
difference represented by the Marangoni or Rayleigh numbers. The Marangoni num-
ber is proportional to the depth of the liquid, the temperature difference and the
variation of the surface tension with respect to the temperature and inversely pro-
portional to the dynamic viscosity and thermal diffusivity. The Rayleigh number
is proportional to the cube of the liquid depth, gravity, the temperature difference
and the thermal expansion coefficient and inversely proportional to the kinematic
viscosity and the thermal diffusivity. In a physical system, fixing the temperature
difference necessarily fixes both the Ravleigh and Marangoni numbers.

We begin by confining our discussion to a single laver of fluid, heated from below.
with a free surface. In this configuration both buoyancy and interfacial-tension forces
become important. For larger depths, buoyancy is more important than interfacial-
tension effects. and when the fluid depth is small. interfacial-tension forces dominate
convection.

(a) Physical effects of a bounded geometry
Consider a single laver of fluid bounded below by a rigid conducting plate and
whose upper surface is bounded by a passive gas. By a passive gas we mean a gas
which has no viscosity and only conducts heat away. The lower plate here is at
a higher temperature than the passive gas. In a fluid of infinite horizontal extent.
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Figure 3. Schematic of four different flow patterns: o. fluid flowing up; x, fluid flowing down.

there is no limit on the number of convection cells. However, in a bounded finite-sized
container only a finite number of convection cells may exist. Physically this means
that at the onset of convection in a bounded cylinder, only one flow pattern will
usually exist. As the aspect ratio (radius/height) of the container increases, more
convection cells will appear. Figure 2 is a representative calculation of the critical
Marangoni number for various aspect ratios and for different azimuthal modes m.
The Biot number, which is a dimensionless surface heat-transfer coefficient is equal
to 0.3.

In a bounded cylinder, each flow pattern is associated with an azimuthal mode,
m, and radial mode, n. For example, at an aspect ratio of 1.0 in figure 2, there is
an m = 1, n = 1 flow pattern (see figure 3). For an aspect ratio of 1.5, there exists
an m = 0. n = 1 flow pattern. The azimuthal mode is the number of times the
azimuthal component of velocity goes to zero, and the radial mode is the number
of times the radial component of velocity goes to zero starting from the centre for a
given vertical cross-section.

At particular aspect ratios, where the fluid switches from one flow pattern to the
next, there coexist two different flow patterns. These aspect ratios are known as
codimension-two points. For certain codimension-two points, the flow patterns will
interact nonlinearly to yield oscillatory behaviour (Rosenblat et al. 1982; Johnson &
Narayanan 1996). This phenomenon will be shown later in §2.

(b) Physical effects of multiple fluid layers

Imagine a less dense immiscible layer of fluid above the lower layer of fluid. Here the
lower layer is bounded below by a rigid conducting plate and another rigid conducting
plate bounds the upper layer. Once again let the temperature of the lower plate be
greater than the upper plate. The interface between the two fluids may deform and
is capable of transporting heat and momentum from one layer to the other. We will
now consider the various types of convection that can occur in a bilayer of two fluids.

In order to distinguish the various convection mechanisms, we introduce phrases
such as ‘convection initiating in one layer or another’. Strictly speaking, convection
occurs in both fluids simultaneously, although one layer may be more unstable than
the other, driving flow in the other layer.

Turning now to various convective mechanisms, consider figure 4. Suppose that
convection initiates in the lower layer. The upper layer responds by being dragged,
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Figure 4. Schematic of the different types of convection-coupling: (a) lower dragging mode; (b)
viscous coupling; (¢) thermal coupling: (d) upper dragging mode; (e) pure thermal coupling.
Moving from (a) to (e), the buoyancy force in the upper laver increases. Gas-liquid thermal
coupling, with surface-driven flow, is caused by the upper fluid buoyantly convecting and simul-
taneously inducing interfacial-tension- or buovancy-driven convection in the lower layer near the
interface.

generating counter rolls at the interface. Hot fluid flows up in the lower layer and
down in the upper layer. The upper layer is not buoyant enough and moves by a
combination of viscous drag and the Marangoni effect. This is seen in figure 4a.
The sign of the velocity switches and the maximum absolute value of the lower-layer
velocity is much greater than the maximum absolute value of the velocity of the
upper layer.

When the buovancy in the upper layer increases and the upper layer begins to
convect, one of two things can happen. The first possibility is that the two fluids are
wiscously coupled. Physically this can be shown in figure 4b as counter-rotating rolls
in the two fluids. This can also be denoted by the vertical component of velocity
switching sign at or near the interface, while the temperature perturbations indeed
switch sign at the interface itself. If the temperature perturbation switches sign
near the interface in either layer near the interface we would say that the bilayer is
nearly viscously coupled. In particular if the switch takes place in the upper fluid
near the interface, then the lower layer is slightlv more buoyant. If the temperature
perturbation switches sign in the lower layer, then the upper laver is more buoyant.
The Marangoni phenomenon, for fluids. whose interfacial tension decreases with an
increase in temperature. plays an ambiguous role here. The hot fluid flowing up in the
lower layer causes the fluid at the interface to move in the same direction. However.
the colder fluid moving down in the upper layver contradicts this. The exact cffect
the Marangoni phenomenon has on the two fluids depends on where the thermal
perturbations change sign. For the situation where the thermal perturbations switch
sign at the interface there is no Marangoni effect.

The second possibility is thermal coupling where the rolls are corotating (figure 4c).
Here hot rising fluid from the lower laver causes hot fluid in the upper layer to
flow up. The maximums of the vertical component of velocity and the temperature
perturbations have the same sign in each fluid layer. Strictly speaking. the transverse
components of velocity should be zero at the interface. However. thermal coupling is
sometimes referred to the case when a small roll develops in one of the layers so as
to satisfy the no-slip condition at the interface. In this situation, when the interfacial
tension decreases with an increase in temperature. the Marangoni effect encourages
flow in the lower fluid layer, and discourages the flow in the upper fluid.

Another interesting phenomenon is present at certain fluid depths where both ther-
mal and viscous coupling can occur. At these depths. a competition arises between
the two types of convection. As both convection configurations cannot occur simulta-
neously, the fluids begin to oscillate between these two states. This phenomenon was
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Figure 5. The four possible interfacial structures at a fluid-fluid interface. Each structure can
give information about the driving force of the convection.

I

first reported by Gershuni & Zhukhovitskii (1982). and has recently been confirmed
by Andereck et al. (1996).

As the buovancy continues to increase in the upper layer. convection initiates
in only the upper layer and the lower laver is viscously dragged (figure 4d). This
situation only occurs when the upper fluid is a liquid. as gases are very tenuous and
will not exert much shear. The vertical component of velocity in this case switches
sign and the magnitude of convection in the upper fluid is much greater than the
magnitude of convection in the lower fluid.

The last figure (figure de) is an example of what may be called pure thermal
coupling. This typically occurs in a liquid-gas system where buoyancy convection
is predominant in the gas layer. The convecting gas then simultaneously creates a
non-uniform temperature profile across the liquid-gas interface and generates either
Marangoni or buoyancy-driven convection in the lower layer (Johnson et al. 1998).
Notice that the convection in the lower laver is now generated purely by horizontal
temperature gradients at the interface and not by viscous dragging. To maintain the
no-slip condition at the interface a small counter-roll may develop in the gas-phase.
This roll is not shown in figure de.

(¢) Physics of interfacial structures

Another indicator of what is occurring in bilayer convection can be inferred from
the fluid—fuid interface instead of the bulk convection. In a paper by Zhao et al.
(1995), four different interfacial structures were identified for any given convecting
bilayer with a deflecting interface. Each of these structures depends upon whether
fluid was flowing into or away from the trough or the crest. and whether the fluid
was hotter or cooler at the trough or the crest of the interface. Hot fluid flowing into
a trough defines the first interfacial structure. The second interfacial structure has
hot fluid flowing into a crest. The third structure has hot fluid flowing away from
a crest and the fourth structure has hot fluid flowing away from a trough. Each of
these four scenarios is given in figure 5.

One of the important factors to consider in interfacial structures is the direction of
the flow along the interface. As interfacial tension is usually inversely proportional to
temperature, at cooler regions of the interface. the interfacial tension will be higher
and will pull on the interface. Where the interface is hotter. the interfacial tension
will be lower causing the fluid to move away from warmer regions. Another important
factor is the direction of the flow into or away from a crest or a trough. One reason
the interface deflects is due to bulk convection, caused by buovancy effects. pushing
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against the interface. Consider two fluids whose dynamic viscosities are equal. If
buovancy-driven convection is occurring mostly in the lower layer, then the fluid will
flow up from the lower layer into a crest. If the fluid flows down from the top layer
into a trough, then one would argue that buoyancy-driven convection occurs mostly
in the upper fluid.

In each of the four cases. the interfacial structure can be used to indicate the
driving force of the convection. In the first interfacial structure, the dominating
driving force is interfacial-tension-gradient-driven convection. This is seen as the cold
fluid, with the higher interfacial tension pulling the fluid up into the crest. The first
interfacial structure can also occur by buoyancy-driven convection in the upper layer,
when the density of the upper layer increases with an increase in temperature. In
the second interfacial structure. buoyancy drives convection in the lower phase. The
hot rising fluid pushes the interface upwards. As the fluid moves along the interface,
it cools and eventually sinks back down. The third interfacial structure is dominated
by buoyancy-driven convection in the upper phase or by interfacial-tension-driven
convection where the interfacial tension increases with respect to temperature. The
fourth interfacial structure only occurs when the lower fluid has a positive thermal-
expansion coefficient. In other words. the density increases with an increase in the
temperature, causing the cooler lower fluid to flow up into a crest.

Knowledge of interfacial structures will be beneficial in the understanding of cer-
tain materials processing problems such as drying of films, coatings and deposition.

(d) Physics of heating from above

In the previous subsections we talked about some of the phenomena that occur in
single- and multiple-fluid layers heated from below. However, in an attempt to avoid
convection in crystal growth, the crucible is often cooled from below and heated from
above. This heating configuration changes the physics of the problem, which is the
topic of this subsection.

When a layer of fluid is being heated from above, it creates a stable density strat-
ification. Therefore not only does the buoyancy force not cause convection, it acts
to inhibit other instabilities. Marangoni convection, though, may still occur in fluids
being heated from above.

First we will consider a single layer of fluid superposed by a passive gas. If the
upper gas is truly passive, then pure Marangoni convection will not occur. For exam-
ple, suppose some random perturbation causes some part of the surface to become
warmer than the rest of the surface. The interfacial tension will decrease in this
region and the tension will pull fluid away from this hot spot. By continuity, fluid
lying below the hot spot will rise up to replace the displaced fluid. As the lower
fuid is cooler than the surface this region now cools off and the interfacial tension
increases, thereby restabilizing the region. However, in real systems, the upper fluid
is never truly passive. Given the same scenario. fluid movement along the interface
will also drag warmer fluid from above. This warmer upper fluid will further increase
the temperature in this region, and, depending upon the ratio of thermal-physical
properties, reinforces the instability.

By this argument, it appears that an active upper fluid is necessary to have
Marangoni convection when the system is being heated from above. However, this
is not the case if the buoyancy effects are included. In Rednikov et al. (1998), it
was demonstrated, theoretically, that oscillatory onset of convection may occur for
a single layer of fluid with a purely passive upper gas. The explanation is as follows.
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If a small volume of fluid is displaced within the bulk of the fluid. the densitv strat-
ification acts as a restoring force, causing a dampened oscillation within the fluid.
These are often referred to as internal waves. The Marangoni force acts similarly, as
discussed above, also giving dampened oscillations. Apparently when these two forces
act together they can overshoot one another leading to sustained oscillatory convec-
tion. Indeed. as was demonstrated in their paper, this only occurs in certain fluids, at
certain depths. where the buoyancy and interfacial-tension forces are approximately
equal.

A completely different type of instability is also possible in two layers of fluids
being heated from above. Gershuni & Zhukhovitskii (1981) first demonstrated this
phenomenon by analysing two immiscible fluids where the interface between the fluids
was assumed flat and the Marangoni phenomenon was neglected. They found the
onset of steady convection when the thermal conductivity and thermal expansivity
of the lower fluid was much greater than that of the upper fluid.

The mechanism of this instability is as follows. Suppose an element of fluid in
the upper layer. near the interface. is displaced towards the lower layer. Because
the thermal expansion of the upper fluid is so small, this element remains in a
relatively neutrally buoyant state. Also. as the thermal conductivity of the upper fluid
is small, it cools very slowly. When the two fluids are heated from above, the displaced
fluid will be warmer than its surroundings. This element of fluid then heats part of
the lower fluid near the interface. The lower fluid, with its relatively large thermal
conductivity and thermal expansivity. quickly heats up and expands horizontally.
This expansion then causes convection in the lower fluid layer and propagates by
viscously coupling with the upper fluid layer. The Marangoni phenomenon. if it were
considered, would act to enhance this instability.

Another case of interest is convection induced by the Ravleigh-Taylor instability.
This phenomenon can occur in two immiscible fluid layers being heated either from
above or below, when the densities of the two fluids are approximately the same and
the thermal expansivity of the lower fluid is much greater than the thermal expansiv-
ity of the upper fluid. Upon heating. the density of the lower fluid will decrease and
become less than the density of the upper fluid. Consequentlv, the heavier upper fluid
will begin to sink causing large deformations in the liquid-liquid interface, generat-
ing the Rayleigh-Taylor instability (Chandrasekhar 1961). This problem has been
investigated extensively in Renardy & Renardy (1985) and Renardy (1996), but is
of application to materials processing only if the densities of both layers are similar.

2. Some experimental observations

The experiments were used to investigate both the oscillatory behaviour near
codimension-two points and the pure thermal coupling of air with silicone oil (see
figure de). Details on the experimental procedure are available in Johnson (1997)
and Johnson & Narayanan (1996. 1998).

(a) Ezrperimental apparatus and procedure

The experiments consisted of two compartments: one for the lower fluid and one
for the air. Lucite inserts were used to give a variety of different fluid depths and
aspect ratios. A copper plate was placed below the liquid insert and the air insert
was bounded above by a high-thermal-conductivity infrared transparent zinc selenide
(ZnSe) window. Heating of the copper plate was done by an enclosed stirred water
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bath that was in turn heated by a hot plate. The top of the ZnSe window was kept
at a constant temperature by accurately controlling the temperature of the overlying
air. The overall temperature control was kept within +0.05 °C.

The flow patterns that developed at the silicone oil-air interface layer were visu-
alized with an infrared camera. Although other flow visualization techniques could
have been used, such as shadowgraphy or particle tracing, the IR camera was chosen
to prove the viability of its use with opaque materials, such as gallium and gallium
arsenide. The IR imaging technique is also useful in observing weak thermocapillary
flow near the surface, whereas shadowgraphy requires some strength in the domain
flow.

To guarantee that the flow pattern seen was indeed the flow pattern at the onset
of convection, the temperature difference applied across the bilayer system was care-
fully increased. At first a temperature difference was applied that was less than the
critical temperature difference necessary for the onset of convection. This, and all
temperature differences, were kept constant for several characteristic time constants;
ca. 3-4 h. If no flow pattern was seen, the temperature difference was then increased
by as little as 0.05 °C. This was repeated until the temperature profile at the inter-
face changed to some distinct pattern, indicating that the fluid had begun to flow.
At this point, the flow pattern was recorded and the temperature difference noted.

(b) Ezperimental observation of codimension-two points

As was noted in §1, there exist certain liquid aspect ratios where two different
flow patterns coexist. For example, in figure 2 at an aspect ratio of 2.3, there exists
a codimension-two point between the azimuthal modes m = 0 and m = 1. The
questions we want to answer are: What happens at these aspect ratios? Does one
flow dominate over the other? Do the different flow patterns coexist as a superposition
of both states, or do they oscillate and interact between these two states?

Rosenblat et al {1982) have performed a weakly nonlinear analysis to investigate
these questions. They found that all three of these possibilities may occur, depending
on the Prandtl number, the particular codimension-two point being investigated. and
on which side of the codimension-two point the aspect ratio lies. To simplify their
calculations, a vertical and tangential vorticity-free side-wall was assumed. Later a
more realistic no-slip condition was applied (Zaman & Narayanan 1996: Dauby et al.
1997), where it was noted that the order of azimuthal modes, as the aspect ratio was
increased, was different than the vorticity-free condition. These latter calculations
were done assuming a linearized instability analysis. Therefore, a direct comparison
of the nonlinear analysis with the experiment is not currently possible. Nonetheless,
some of the qualitative features should still hold true.

A series of experiments were performed to first find the codimension-two points
and then determine the flow patterns at or near the codimension-two point (Johnson
& Narayanan 1996). A 5.0 mm-high 2.5 aspect-ratio liquid insert was used in con-
junction with a 11.2 mm air height. Table 1 shows the calculated critical Marangoni
numbers for four different azimuthal modes for a 2.5 aspect ratio. The table predicts
that an m = 0 flow pattern should be seen at the onset of convection. However,
the critical Marangoni numbers for m = 1 and m = 2 are also very close to the
onset point. Physically, this means that for temperature differences slightly above
the critical temperature difference, these modes may affect the flow pattern.

At the onset of convection. a very faint m = 0 double-toroidal-flow pattern could
be seen. When the temperature difference was increased by just 0.05°C, the flow
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Table 1. Critical Marangoni number for the first four azimuthal modes for a 2.5 aspect ratio.

Marangoni
modes number
0 69.37
1 70.84
2 70.41
3 72.98

Figure 6. Infrared images showing the mode-switching behaviour in the paper by Johnson &
Naravanan {1996). The experiment used 91 ¢S silicone oil and a 5.0 mm, 2.5 aspect-ratio insert.

pattern changed from the double toroid to a dynamic switching between two and
one flow cells (see figure 6).

At first, two symmetric cells appeared (figure 6a). Then, one of the cells would
grow and push the other cell out of the picture. forming a superposition of the
m = 0 and m = 1 flow pattern (figure 6b). Next one cell would grow (figure 6¢), then
split into two cells. rotated by 90° (figure 6d). This process would then repeat itself
(figure 6e) arriving back to the original m = 2 flow pattern (figure 6f). As long as
the temperature difference was held constant. this dynamic process would continue
repeating itself approximately every 20 min.

It is noteworthy that oscillatory convection is of particular importance in crystal
growth. It has been shown (Hurle 1994) that fluctuating temperatures in the liquid
melt have a deleterious effect on the crystal quality. lcading to a higher dislocation
density.

(c¢) Ezperimental observations of thermal coupling

The thermal coupling of air with the lower fluid was originally discovered by a
series of experiments using the same experimental apparatus (Johnson & Narayanan
1998). As was explained in §1. air can thermally couple with the lower fluid cans-
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3 mm 20 mm

Figure 7. Infrared images of the flow pattern for different air heights and different viscosities of
silicone oil. (a) and (b) used a 91 ¢S silicone oil. (¢) and (d) used a 142 c8 silicone oil. (a) and
(c) had a 3 mm air height, (b) and (d) had a 20 mm air height.

ing interfacial-tension-driven flow in the lower fluid. To explore this, a set of four
experiments was performed.

In all of the experiments. a liquid aspect ratio of 2.0 was studied. Two different air
heights (3 and 20 mm) and two different viscosities were used. When the air height of
3 mm was used, the flow patterns did not change with viscosity but the temperature
difference across the liquid did increase proportionally, indicating that convection
was controlled by the liquid phase. The liquid convection pattern also agreed with
calculations and the experimental result is seen pictorially in figures 7a.c.

When a deeper air height was used, the temperature difference across the liquid at
the onset of convection did not change substantially between the experiments that
employed different fluid viscosities. This indicated that convection was controlled by
the dynamics in the air layer. It may be argued that air convection, when dominant,
acts like buoyancy-driven convection between two rigid conducting plates as the
lower liquid is much more viscous and more conductive than the air above it. A
comparison was therefore made between the measured temperature drops across
the air for the deeper air heights and the numerical calculations of Hardin et al.
(1990). The experimental and theoretical results compared remarkably well and the
flow pattern predicted theoretically also compared favourably with the experimental
results. This confirmed our hypothesis that deep air heights interact with the lower
liquid and drive thermally coupled flow through the interface.

This phenomenon of thermal coupling may not be as important in LEVB because
the crucible is often heated from above. However, this may be much more applicable
to other important processes, such as evaporation and drying of films.

3. Future work

The research of convection in multiple fluid layers has revealed and continues to
reveal many interesting phenomena. However. further work is needed to elucidate
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some of the details more fully in a realistic system. One of the more interesting areas
involves analysing some of the basic instability phenomena in bounded containers.
To do this, two-fluid-layer numerical models that take into account realistic no-slip
conditions will be necessary. With a proper model some of the effects, such as the
Rayleigh-Taylor instability, the Gershuni-Zhukhovitskii instability and oscillations
between thermal and viscous coupling, can be studied for containers with small
aspect ratios.

To date, few experiments have been performed in small aspect-ratio containers.
As was demonstrated in the codimension-two point experiments, new and interest-
ing dynamics are present in small aspect-ratio containers, which are not present
in large aspect-ratio containers. It would be interesting to show the interaction of
codimension-two points with such instabilities as the oscillations between thermal
and viscous coupling. Additionally, several of the phenomena discovered with theo-
retical models have yet to be shown in experiments. Two examples are the Gershuni-
Zhukhovitskii instability and the oscillations shown by Rednikov et al. (1998).

By investigating some of the basic physics of multilayer convection, we obtain
a better understanding and appreciation for the liquid-encapsulated crystal-growth
process and other fluid materials processing problems where temperature gradients
are employed. Further research into this field should lead to improvements in such
an important industrial process.
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NASA via grants NGT 3-52320 and NAG 1-1474. The authors thank Pierre Dauby for figure 2.
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Discussion

J. R. HELLIWELL (Department of Chemistry, University of Manchester, UK). Ref-
erence has been made to oscillatory convection flow patterns in fluids and that this
is known to cause defects (dislocations and fault lines) in crystal growth. My own
particular research interests include the growth of protein crystals for X-ray crystal-
structure analysis and how the quality of protein crystals can be improved, and
thereby cxploited, for higher resolution X-ray crystallographic data collection. I have
been using CCD and interferometry diagnostic monitoring of protein crystal growth.
and have seen benefits of microgravity if the crystals do not move. and if the mother
liquor is not subject to convection (including Marangoni convection). The benefits
of these conditions manifest as reduced crystal mosaicity and likewise a lack of. or
only a few, mosaic blocks in X-ray topographs of crystals in such cases. In his exper-
iment. how can Dr Johnson be sure that it is specifically oscillatory flow patterns
that cspecially caused defects in his type of crystal?

D. Jonnson. We cannot be sure that oscillatory convection is always responsible
for defects in crystals. However, research cited by Hurle (1994) has indicated that
oscillatory behaviour generated through double diffusion is the cause of striations
along the growth axis in directional solidification. The point of this paper, however,
is to show that oscillatory behaviour need not arise merely from opposing forces that
are seen in thermo-solutal, otherwise known as double-diffusive. convection. Such
oscillatory behaviour can arise by geometrical effects. Indeed as the crystal grows.
the aspect ratio of the liquid phase changes and there are certain aspect ratios where
the energy states may coexist leading to codimension-two points that can cause
oscillatory convection.

S. K. WiLsoN (Department of Mathematics. University of Strathclyde, Glasgow,
UK). 1 complement the authors on a penetrating investigation of a complicated
physical situation. As I understand it. they have found examples of slow oscillations
between two different steady flow patterns in the vicinity of codimension-two points
calculated theoretically using linear theory for the onset of steady convection in a
finite-sized container. May I ask if truly oscillatory (rather than quasi-steady) con-
vection is ever observed. and if it would be possible to undertake the same kind of
investigation for the onset of oscillatorv convection?
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D. JounsoN. Yes. under certain circumstances, we believe that oscillatory convection
can be observed in liquid-gas bilayer experiments. Theoretical calculations that were
done indicate the absence of such convection at the onset. In that case what is the
origin of oscillations in our experiments? The answer lies in the fact that a Hopf
bifurcation lies in the vicinity of the onset but only in the post-onset region. The Hopf
bifurcation mode or oscillatory mode was excited by the presence of codimension-
two points. These points were generated by the fact that at certain aspect ratios
two competing flow states coexist and in a manner of speaking the system wants to
choose between the flow states leading to continual oscillations.
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In this paper our most recent research results on natural convection in a closed cylinder, where our
interest focuses on pattern structure dependence on aspect ratio and on temperature-dependent
viscosity, are summarized. The main results are (a) the experiments on the onset pattern and
conditions for pure Rayleigh convection in circular cylinders compare favorably with linearized
stability results of Hardin efal [Int. J. Num. Methods Fluids 10. 79 (1990)], as well as
three-dimensional nonlinear calculations made by us; and (b) experiments and nonlinear
calculations indicate a variation of the patterns at and near the codimension two points when large
temperature differences are introduced, so as to cause a substantial change in viscosity. © 1995

American Institute of Physics.

I. INTRODUCTION

The physics of Rayleigh convection is well understood
and the classical theory has been reviewed in the treatise by
Chandrasekhar' and in the recent book by Koschmieder.” In
this problem, a layer of fluid is heated from below, and one
of the objectives is to determine the conditions for the onset
of flow from an erstwhile quiescent state, as well as the
associated pattern. The critical temperature difference for the
onset of flow is given in terms of the Rayleigh number. This
group expresses the ratio of the buoyancy force, which pre-
cipitates the convection, to the effects that dissipate the flow,
viz thermal and momentum diffusivities. In the theory, the
critical Rayleigh number is seen as a bifurcation point from
the unstable quiescent solution. The experimental determina-
tion of critical Rayleigh numbers is often affected by the
presence of vertical sidewalls and the review by Azouni®
deals with the modulation of sidewalls on convection.

Stork and Miiller* performed experiments to determine
the critical conditions at the onset of convection, and they
compared their results with calculations of Charlson and
Sani.” Some of these calculations were recently corrected
and extended by Hardin et al.% An important observation that
can be made from these calculations is that at critical condi-
tidns two azimuthal modes can coexist at certain aspect ra-
tios. These are called codimension two points, and it turns
out that they are spaced well apart at small aspect ratios
(radius/height), but occur more frequently as the aspect ratio
increases. It is also seen from these calculations that as the
aspect ratio increases the various bifurcation points corre-
sponding to various azimuthal modes lie close to each other.

The experimental verification of the calculations is the
main reason for our interest in this problem. Most experi-
ments were performed by applying a series of temperature
differences across a bounded liquid layer and visualizing the
flow to determine the onset state. It can be seen from the
definition of the Rayleigh number that when experiments are
conducted in deep liquid layers, the critical temperature dif-
ferences become very small (scaling inversely with the cube
of depth). However, the time constant to reach steady condi-
tions increases quadratically. Consequently, we may ask
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whether any adverse effects can occur by lowering the liquid
depth so as to get better temperature control across the liquid
layer, thereby reducing the time constant so that frequent
changes of experimental conditions can then become pos-
sible. The main consideration is that the thermophysical
properties can now vary considerably over the liquid height.
While it is evident that the critical Rayleigh number will now
deviate from the predictions of classical theory that assumes
constant properties, it is not so clear how the patterns will
change and in what regions of aspect ratio these changes will
be prominent. The purpose of this paper is to provide the
evidence, both numericaily and experimentally, which illus-
trates that viscosity variation does affect the position of the
codimension two points. A part of this study is devoted to the
numerical modeling of nonlinear three-dimensional (3-D)
convection showing the patterns near the onset for fluids of
constant thermophysical properties. Additionally, the effect
of temperature-dependent viscosity on flow patterns is shown
numerically along with experimental verification.

Il. THE EXPERIMENTAL APPARATUS

A schematic of the experimental test unit is shown in
Fig. 1. Experiments were conducted with Dow Corning sili-
cone oil sandwiched between two plates. The lower bound-
ary was made of anodized aluminum (thickness=3 mm),

Cooling Water in

|

Sapphire Plate

Cooling
Water out

|
&

FIG. 1. Schematic of experimental apparatus for Rayleigh convection.
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TABLE [. The properties of the Dow Corning silicone oil used in the ex-
periments.

Thermal conductivity 0.001 588 W/cm K
Specific heat 1.463 J/ig K
Density 0.968 g/cm®

Thermal diffusivity 0.001 cm’s
Kinematic viscosity

at 35 °C 0.697 cm/s
Thermal expansion

coefficient 0.000 96/K

while the upper boundary was an optically transparent sap-
phire (thickness=10 mm). Flow visualization was made pos-
sible by aluminum flakes that were dispersed throughout the
oil. The sidewalls were precisely machined Lucite. The oil
was derated under vacuum so as to remove most of the en-
trapped air. It was then loaded into the test section, taking
care to avoid the presence of bubbles. The dimensions of the
test section were measured with a micrometer and were ac-
curate within 0.1 mm. The lower side of the anodized alumi-
num plate was in contact with a uniformly stirred water bath,
which, in turn, was heated from below by an electric resis-
tance heater. The bath was filled with water and bubbles
were removed. It was felt that a uniformly stirred bath under
the test section was better than direct contact of the alumi-
num plate with a resistance heater, as we were interested in
avoiding externally imposed thermal signatures on the test
section. The upper sapphire plate was in contact with a con-
tinuously flowing water bath. The temperature difference
across the test section was assumed to be the temperature
drop between the lower surface of the aluminum plate and
the upper surface of sapphire, as both aluminum and sap-

initial condition: velocity = 0
temperature = 3D disturbance

y

! calculate velocity

no—ese COTTEC
pressure

calculate temperature

FIG. 2. The flow chart of the calculation procedure.
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FIG. 3. The 3-D temperature disturbance used in the calculations.

phire have large conductivities compared to the silicone oil.
The thermophysical properties of the Dow Corning silicone
oil used are given in Table I. Lucite has same thermal diffu-
sivity as silicone oil within a percent and is 12%-15% more
thermally conductive. Thus, the temperature gradients in the
sidewalls and working fluid, i.e., silicone oil are very close,
leading to a “‘conducting sidewall” thermal boundary condi-
tion. We will observe in a later section that the main results
of this paper do not depend significantly whether the side-
wall thermal condition is insulating or conducting. It may be
noted that the thermal diffusivities of aluminum (0.97 cm?/s)
and highly conductive sapphire (0.1633 cm?s) are large
compared to silicone oil, and so the time constants for a
temperature change to establish steady conditions in these
solid plates were quite short. The temperature differences
were measured with a pair of resistance temperature detec-
tors attached to the water bath side of aluminum and sap-
phire- plate. They were calibrated by an Omega 700 ther-
mistor with the accuracy for temperature difference
measuring within a 0.05 °C. The dynamic viscosity of sili-
cone oil versus temperature is given as
1=0.004 471 86¢'>*1Tg/ cm s. This came from the viscos-
ity measurement at several temperature levels. The dynamic
viscosity was measured in a coaxial cylinder, normal open
cup Haake RV-12 and the viscosity measurements were ac-
curate within 4%, assuming Newtonian behavior. The water
temperature in the bath above the sapphire plate was con-
trolled at a fixed point, while the water temperature in the
bath below the aluminum plate was changed according to the
heating patterns for each experimental run. The temperature
differences across the test section were controlled with a PID

TABLE II. The onset Rayleigh number and flow pattern indices reported by
Hardin et al.®

RIH Critical Ra Flow pattern
1 2260 0.2)
18 1835 (1.3)
25 1781 (0.4)
0.75 2592 (1,1)
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FIG. 4. The flow pattems from the calculations with constant viscosity: (a) RZH=1, Ra=2270; (b) R/H=1.8, Ra=1900; (¢} R/H=2.5, Ra=1800: and (d)

R/H=0.75, Ra=2600.

controller, which was tuned for the experimental conditions.
The heating pattern in all of the experimental runs consisted
of several segments at different values of temperature differ-
ences around the onset point, and each of them had a slow
ramping-up period and a constant temperature difference pe-
riod greater than four times the thermal time constants of the
test section. These time constants were calculated from the
thermal diffusivity and the largest length scale in the test
section.
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. THE MODEL

The calculation was performed in a cylindrical coordi-
nate system where z is the vertical coordinate. The governing
equations are of the well-known Boussinesq form, except
that the viscosity is taken to be a function of temperature. On
scaling the governing equations in a manner similar to Har-
din et al.,(’ the following definition of Rayleigh number (Ra)
is arrived at Ra=8g AT H>/kv. Here, H is the depth of the
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FIG. 5. The schematics of flow patterns from Hardin er al.:® (a) RIH=1, (b} RIH=18, (c) R/H=2.5, and (d) R#/H=0.75. Here X indicates the falling fluid

while O indicates the rising fluid.

fluid and AT is the temperature drop across it, g is the gravi-
tational constant, 8 is the thermal expansion coefficient,
which is positive, and » and « are kinematic viscosity and
thermal diffusivity at a reference temperature.

The density was taken to be linearly dependent upon
temperature, based on information from the Dow Coming
Company that supplied the oil. The other thermophysical
properties were obtained from the Dow Coming Company
and are reported to be insensitive to temperature changes
within the range used in this study. It is for this reason that
only the viscosity variation with temperature was considered
important in this study.

The boundary conditions assumed no slip and no flow on
velocities at the rigid surfaces, with vanishing temperature
perturbations at the horizontal boundaries. Along the vertical
boundaries most of the calculations assumed insulating sides,
even though thermally conducting sidewall conditions that
used a constant temperature gradient in the solid vertical
walls would be more appropriate. As mentioned later, the
conclusions of this investigation did not change very much
when insulating vertical sidewall conditions were used.

The SIMPLE’ (Semi-Implicit Method for Pressure Linked
Equations) algorithm was employed to carry out the nonlin-

Phys. Fluids, Vol. 7, No. 7, July 1995

ear calculations. The flow chart in Fig. 2 shows the proce-
dure of the calculation.

IV. DISCUSSION OF THE RESULTS

In order to test the accuracy of the model, the computa-
tions were performed for the classical Rayleigh problem, by
which is meant a closed, rigid, and circular cylinder contain-
ing a “Boussinesq” fluid heated from below and insulated
along the vertical sides. As the model is a nonlinear 3-D
simulation, no attempt was made to obtain the exact bifurca-
tion point. Instead, the Rayleigh number was an input param-
eter to the model. A 3-D disturbance on the linear distribu-
tion of temperature was introduced to generate the onset of
convection. Figure 3 shows the temperature distribution as
an initial condition for the calculations. The initial tempera-
ture distribution was horizontally uniform at a value that was
linear in the z direction, except the two areas marked, where
it was equal to the bottom temperature. The resulting steady
pattern was calculated from this disturbance. When the Ray-
leigh number was close to the bifurcation point reported by
Hardin er al..® the predicted pattern was identical to what
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Experimental

Results

FIG. 6. The comparison of flow patterns between experiments and the calculations with a variation of viscosity: (a) R/H =15, AT=19.0°C; (b) R/H=1.8,

AT=18.5°C; and (c) R/IH=2.5, AT=18.0°C.

was reported by them. A quantitative comparison of the ve-
locity and temperature field was not possible, as Hardin
et al.® did not report this aspect of their study. The results of
our calculations are given in Figs. 4(a)-4(d) and those of
Hardin e al.® are given in Table II for a variety of aspect
ratios (R/H), where R is the radius of the test section. Note
that two graphs, with the top view and cross section, are
presented for each case in Fig. 4. The location where the
cross-section graph was made is indicated by a dashed line in
the top view graph. The input Rayleigh numbers for each
case are shown in the caption of Fig. 4. Table II contains the
bifurcation point and the pair of indices that shows the flow
structure at onset. The first index represents the azimuthal
mode number while the second index represents the maxi-
mum number of roll cells across the diameter of the cylin-
drical test section. For example, a flow mode (0,2) represents
the schematic shown in Fig. 5(a), while mode (1,3) is seen in
Fig. 5(b), mode (0,4) in Fig. 5(c), and mode (1,1) in Fig.
5(d). Again, two graphs are presented for each case in Fig. 5.
In the top view graph, the circles indicate the flow coming up
from the plane of the paper. while the crosses show the flow
going down into the plane. It may be observed that the re-

1580 Phys. Fluids, Vol. 7, No. 7, July 1995

sults of the calculations as shown in Fig. 4 are in good agree-
ment with those given in Table Il and Fig. 5.

The next phase of the study involved the experimental
determination of the patterns and comparison with the nu-
merical modeling. Experiments were conducted in a variety
of aspect ratios, and since the viscosity varied across the
depth of the layer. our interest was focused on the patterns
that would evolve as a result of this complication. Calcula-
tions were done so as to incorporate the viscosity variation.
The results of this comparison are shown in Figs. 6(a)-6(c)
for aspect ratios of 1.5, 1.8. and 2.5, respectively. The calcu-
lation results are shown in two graphs for each case: {1} a
3-D flow pattern at the outer surfaces of a part of the cylin-
der, and (2) a flow plan at a constant 2" plane near the top.
Experimental results are presented by the photographs taken
from the top of the test section. In these photographs, the
white regions are the locations where mainly horizontal
flows occurred. while the black regions were occupied by
mainly vertical flows. In each case. the comparison is excel-
lent. The experimental runs were repeatable and the same
working fluid was used in each experimental run. The flow
visualization was made possible by the introduction of alu-
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FIG. 7. The comparison of computational results and experimental results at the aspect ratio near the codimension two point: (a} R/H=1.6, H=7.2 mm.

AT=39°C; (b) R/IH=1.6 H=4.2 mm, AT=199 °C.

minum flakes, which were in the submicron range size into
the liquid so as to form a uniform slurry. The difference in
the numerical results shown in Fig. 4 and Fig. 6 is that the
latter assumed a viscosity variation. Even though the actual
experiment simulated the conducting sidewall case, the
model reflected the insulating sidewall case. In fact. a sepa-
rate calculation with the conducting sidewall case for aspect
ratios 1.5 and 1.8 showed very little discernible change in
patterns from the result, where an insulating wall condition
was used. The comparison given in Fig. 6 is very encourag-
tng, and there seems to be very little to distinguish these
results from the perfect Rayleigh problem results of Figs.
4(b) and 4(c). Because the viscosity variation was taken into
account, the comparison between experiments and model are
shown for the actual temperature difference (AT) used in our
experiment.

This raises the question of what effect, if any, the vis-
cosity variation has on the patterns at onset. It is surmised
that the location of a codimension two point must be predict-
ably affected. A codimension two point is one where two
modes coexist for the same critical Rayleigh number. In
other words, it is the aspect ratio at which a switch in pat-
terns takes place from one state to another. Straughan® has
shown in the case of an unbounded layer of fluid that the
critical wave number is reduced when a viscosity variation
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with temperature is assumed. This observation should there-
fore immediately translate into a shifting of the codimension
two point to the right. i.e.. toward larger aspect ratio, at least
for the case of a cylinder with artificial conditions of vortic-
ity free sidewalls. It is to be noted that the unfolding of the
critical Rayleigh number versus wave number curve into the
relationship between Rayleigh number and aspect ratio has
been used in the past by Charlson and Sani® and Rosenblat,”
among many others. To test the hypothesis that the codimen-
sion two point would be shifted to the right if a fluid of
varying viscosity were used, a number of experiments were
conducted in various aspect ratios with tall and short heights
of liquid layers. The corresponding calculations were made
with the assumption of insulating sidewalls as the position of
the codimension two point depends only slightly on this
change. For example, Hardin er al.® report that the codimen-
sion two point for conducting walls occurs at an aspect ratio
of 1.59 and at an aspect ratio of about 1.58 for the case of
insulating sidewalls. According to the calculations of Hardin
et al..b a flow mode of (0.2) should occur immediately to the
left of the computed codimension two point, while a mode of
(1,3) should occur immediately to the right. Figure 7 shows
the comparison of patterns between modeling and experi-
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ment for an aspect ratio of 1.6 for a tall fluid height of 7.2
mm, with a temperature difference of 3.9 °C and for a short
fluid height of 4.2 mm, with a temperature difference of
19.9 °C. The comparison between modeling and experiments
is again very good and a remarkable change in patterns was
observed. The tall fluid set into a mode (1,3) and the short
fluid set into a mode of (0,2), indicating that the codimension
two point had shifted to the right when a larger temperature
difference was introduced, such that the variation of viscos-
ity became large enough to make the shifting distinguishable.
This observation thereby agreed qualitatively with our fore-
cast, which, in turn, was based on the calculations of
Straughan?® for a laterally unbounded fluid.

V. SUMMARY

Comparison of experimental results with results of de-
tailed 3-D calculations for Rayleigh convection in a closed
cylinder was made. Very good agreement was obtained be-
tween theory and experiment. The viscosity variation did not
affect the onset flow patterns significantly from the constant
viscosity case, except at the vicinity of the codimension two
points. Based on the theoretical prediction of Straughan® for
a laterally unbounded fluid, it was conjectured that the codi-
mension two points would shift toward larger aspect ratios if
viscosity variation were to be considered. This conjecture
was shown to be correct in our study and once again we
obtained excellent agreement between experiment and the
corresponding numerical modeling.
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